

Properties

Methods of Preparation

Chemical Reactions

B.Pharm. | POC-I | U 2 | L18

Alkenes congaing two C=C in alternate is called diene and alkadienes

Conjugated Dienes Organic Chemistry

1,3-Butadiene

Chemical formula	C4H6
	CH2=CH-CH=CH2
Molar mass	54.0916 g/mol
Appearance	Colourless gas
	or refrigerated liquid
Odor	Mildly aromatic or gasoline-like
Density	•0.6149 g/cm³ at 25 °C, p>1 atm
	•0.64 g/cm ³ at −6 °C, liquid
Melting point	-108.91 °C (-164.04 °F; 164.24 K)
Boiling point	-4.41 °C (24.06 °F; 268.74 K)
Solubility in water	1.3 g/L at 5 °C, 735 mg/L at 20 °C
Solubility	•Very soluble in acetone
	•Soluble in ether, ethanol
Uses	 Most butadiene is used to make synthetic rubbers for the manufacture of
	tyres and components of many consumer items.

H2C CH2 MI-C-atm-Sp2 hyb.

Preparation Methods

1. From Acetylene

2. From 1-Butene

Preparation Methods

3. From 1,4-btanediol: by acid catalyzed dehydration

4. From n-Butane: by catalytic dehydrogenation

$$CH_{-}CH_{$$

Chemical Reaction

1. Hydrohalogenation

Chemical Reaction

2. Halogenation

3. Hydrogenation

$$CY = CH - CH = CY = \frac{H_2/PE}{2 m r/H_2} \qquad CH = CH - CH - CH_2 + CH - CH = CH - CH_3$$

Chemical Reaction

4. Hydration

5. Polymerization

Conjugated Dienes Organic Chemistry

Chemical Reaction

6. Diels-Alder Reaction - Reaction of conjugation dienes with alkene or alkyne (Dinophile)

give to adduct product. Preferred for synthesis in six membered ring

B.Pharm. | POC-I | U 2 | L18

Stability of Conjugated Diene (Alka diene)

Conjugated dienes are more stable than non-conjugated dienes

- ✓ **Resonance:** delocalization of pi electron clouds on Carbon atoms
- ✓ E.g. In conjugated 1,3 Butadiene, all four pi electrons are delocalized over all four Carbon atoms. The delocalization of pi electrons makes the compound more stable.

Stability of Conjugated Diene (Alka diene)

B.Pharm. |POC-I |U2 | L19

Rearrangement of allylic compound

Rearrangement of allylic compound

Allylic Rearrangement

Electrophilic Addition

$$C_{1} = C_{1} - C_{1} = C_{1} = C_{1} - C_{1} = C_{1} = C_{1} - C_{1} = C_{1} = C_{1} = C_{1} - C_{1} = C_{1$$

2. Hydration (Addition of water)- E+ Addition

$$C_{4} = C_{4} = C_{4$$

Free Radical Addition Reaction

Free Radical Addition Reaction

2. Halogenation

Thanks for Watching

Subscribe my YouTube Channel

Uploads