#2

Introduction & Classification of Organic Compounds

B.Pharm. |POC-I |U1 | L1

Organic Chemistry

Organic Chemistry

- Chemistry of Carbon-containing compounds. Org. Ch. J. O. N. P., S
 Organic chemistry is the study of the structure, properties, composition, reactions, and preparation of carbon-containing compounds.
 Most organic compounds contain carbon and hydrogen, but they may also include any number of other elements (e.g., nitrogen, oxygen, halogens, phosphorus, silicon, sulfur).
- Before 1850s chemist belief that inorganic compounds are obtained from minerals, and organic compounds are obtained from living organism (plants/animals).
- But today, we know that many organic compound can synthesize form inorganic materials like carbonates or cyanides.

A. Acyclic/Aliphatic/Open Chain

Organic compounds in which all the carbon atoms are linked to one another to form open chains (straight or branched) are called Acyclic/Aliphatic/ Open Chain acyclic or open chain compounds. These may be either saturated or unsaturated. For example- Alkanes, Alkenes, Alkynes
 Butane→ CH₃CH₂CH₂CH3
 Ethyl alcohol→ CH₃CH₂OH

Isobutane \rightarrow (CH₃)₂CHCH₃

■ 1-Butene → $CH_3CH_2CH = CH_2$

Acetic Acid→ CH₃COOH

• Acetaldehyde \rightarrow CH₃CHO

■ 3,3-dimethyl-1-butene \rightarrow (CH₃)₃C - C = CH

B. Cyclic

- Cyclic compounds contain at least one ring or closed chain of atoms. These are of two types:
- 1. Homocyclic: These compounds contain rings which are made up of only one kind of atoms. If all the atoms in the ring are carbon atoms, they are called carbocyclic compounds. These are of two types-
 - Alicyclic: Alicyclic compounds are carbocyclic compounds which resemble aliphatic compounds in their properties. For

B. Cyclic

- Cyclic compounds contain at least one ring or closed chain of atoms. These are of two types:
- I. Homocyclic:
 - ii) Aromatic: Organic compounds containing one or more fused or isolated benzene rings are called aromatic compounds, These are also called benzenoid compounds or arenas.

Anthracene

- Cyclic compounds contain at least one ring or closed chain of atoms. These are of two types:
- I. Heterocyclic: Cyclic compounds containing one or more heteroatoms (e.g. O, N, S etc.) in the ring are called heterocyclic compounds. These are of two types. (C+W+ M/O/P/S ____ Heteroatoms
 - Alicyclic: Heterocyclic compounds which resemble aliphatic compounds in their properties are called alicyclic heterocyclic compounds. For example,

B. Cyclic

- Cyclic compounds contain at least one ring or closed chain of atoms. These are of two types:
- 1. Heterocyclic:
 - ii) Aromatic: Heterocyclic compounds which resemble benzene and other aromatic compounds in most of their properties are called aromatic heterocyclic compounds. For example.

IUPAC Nomenclature of

Organic Compounds (Part 1/3: Hydrocarbons)

B.Pharm. |POC-I |U 1 | L2

- **IUPAC:** International Union of Pure and Applied Chemistry
- In 1957, IUPAC nomenclature system is referred as a systemic approaches to naming of an organic compounds.
- Any given molecular structure has only one IUPAC name, this is the important feature of the IUPAC System.

Salient features of IUPAC system

- A given compound can be assigned only one name.
- This can be applied in naming of complex & multifunctional organic compound.
- This is simple, systematic and scientific method of nomenclature of organic compounds.

<u>Prefix</u> (alphabetically) + <u>Root</u> Word + <u>Suffix</u>

IUPAC System

Prefix (Alphabetically) + Root Word (Alk) + Primary Suffix (ane/ene/yne) + Secondary suffix (main

functional group)

Hydrocarbons- <u>Root Words & Primary</u> Suffix

Chain Length	Root word	Chain Length	Root word	Nature of carbon chain	P-suffix	Generic name
C ₁	<u>Meth-</u>	C ₁₁	Undec-	Saturated ($\underline{C} - \underline{C}$)	-ane	Alkane
C ₂ -	Eth-	C ₁₂	Dodec-	Unsaturated ($C = C$) with one double bond (-ene'	Alkene
C ₃ -	Prop-	C ₁₃	Tridec-	alkene		
C ₄	But-	C ₁₄	Tetradec-	Unsaturated ($C = C$) with one triple bond	wne	Alkyne
C ₅	Pent-	C ₁₅	Pentadec-			
C ₆	Hex-	C ₁₆	Hexadec-			
C ₇	Hept-	C ₂₀	Eicos-	Unsaturated with two $C = C$ bonds	-diene	Akladiene
C ₈	Oct-	C ₃₀	Triacont-	Unsaturated with two $C \equiv C$ bonds	-diyne	Alkadiyne
C ₉	Non-	C ₄₀	Tetracont-	-		
C ₁₀	Deç-	C ₅₀	Pentacont-	Unsaturated with three C = C bonds	-triene	Alkatriene

IUPAC System

Prefix + Root Word + Primary Suffix (ane/ene/yne) + Secondary suffix (main functional group)

Number of Carbons in chain	Prefix	C-C ane	C=C	C≒C
1	Meth-	Methane	ene	yet yne
2	Eth-	Ethane	Ethene	Ethyne
3 —	Prop-	Propane	Propene	Propyne
4	But-	Butane	Butene	Butyne
5	Pent-	Pentane	Pentene	Pentyne
6	Hex-	Hexane	Hexene	Hexyne
7	Hept-	Heptane	Heptene	Heptyne
8	Oct-	Octane	Octene	Octyne
9	Non-	Nonane	Nonene	Nonyne
10	Dec-	Decane	Decene	Decyne

Prefix + Root Word + Primary Suffix (ane/ene/yne) + Secondary suffix (main functional group)

Functional Group	Secondary suffix 🧹	Prefix 🖌
Carbo xylic acid (-COOH)	-oic acid	Carboxy- 🧹
Sulphonic (-SO3H)	-sulphonic acid	Sulfo-
Ester (-COOR)	-oate	Alcoxycarbonyl-
Acid halide (-COX)	-oyl halide	halo carbonyl-
Amide (-CONH2)	-amide/carboxamide	Carbamoyl-
Cyanide (-CN)	-nitrile	Cyano-
Aldehyde (-CHO)	-al	Oxo/Formyl-
Ketone (>CO)	-one-	Охо-
Alcohol (-OH)	-ol	Hydoxy-
Amine (-NH2)	-amine	Amino-
Alkene (C=C)	-ene	
Alkyne (C=C)	yne	
Alkane (C-C)	-ane	
Ether (-OR)	-	Alkoxy-
halide(-X)	-	Halo-
Nitro (-NO2)	-	Nitro-

SC = 2-chlmot Prop+ anc + oic au d Rost Sulfi Prefix Lord Sulfi 2-chloro propanoic ad

Hydrocarbon/Alkanes

Name	Molecular Formula (C _n H _{2n+ 2})	Condensed Structural Formula	Prefix name
methane	CH_4	CH ₄	Methyl (Y)
ethane	C_2H_6	CH ₃ CH ₃	Ethyl
propane	C_3H_8	CH ₃ CH ₂ CH ₃	Propyl
butane	C_4H_{10}	CH ₃ CH ₂ CH ₂ CH ₃	Butyl
pentane	C_5H_{12}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	Pentyl
hexane	C_6H_{14}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Hexyl
heptane	C_7H_{16}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Heptyl
octane	$C_{8}H_{18}$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Octyl
nonane	C_9H_{20}	CH ₃ CH ₂ CH ₃	Nonyl
decane	$C_{10}H_{22}$	CH ₃ CH ₂	Decyl

Rules for Nomenclature

- According to the Guidelines set by IUPAC, the nomenclature of compounds must follow these steps:
 - 1. The Longest Chain Rule
 - 2. Numbering start at the Lowest Set of Locants/branching

CHY

c = c2 + 1

3-hexen-1yne $\begin{array}{c|c} c - c - c - c - c = c \\ \hline b & 5 & 4 & 5 & 2 \\ \hline \end{array}$

Rules for Nomenclature

- 3. Multiple instances of the substituent:
- Prefixes which indicate the total number of the same substituent in the given organic compounds are given, such as di, tri, etc.

23,81-trimethy/ hexane

Rules for Nomenclature

4. Naming Complex Substituents: The branched and complex substituents must be written in brackets in the IUPAC nomenclature of the corresponding compounds.

Prefix n- for normal straight continuous chain

Prefix n- for normal straight continuous chain

сщ-сщ-сщ-сщ сщ-сц-сцон n-butane n-butanol or n-butylalcohol

Prefix Iso- methyl group at 2nd position

Prefix Tartary (Ter)-

Chz

(22- dimetery propy)

3-(for-buly) -

Noncolotur

Nomenclature of Organic Compounds (Part 2/2: Hydrocarbons with Functional Groups)

B.Pharm. |POC-I |U 1 | L3

IUPAC System

Prefix + Root Word + Primary Suffix (ane/ene/yne) + Secondary suffix (main functional group)

1000

Number of Carbons in chain	Prefix	C-C and	<u>C=C</u> one	C≡C ◄~
1	Meth-	Methane		
2	Eth-	Ethane	Ethene	Ethyne
3	Prop-	Propane	Propene	Propyne
4	But-	Butane	Butene	Butyne
5	Pent-	Pentane	Pentene	Pentyne
6	Hex-	Hexane	Hexene	Hexyne
7	Hept-	Heptane	Heptene	Heptyne
8	Oct-	Octane	Octene	Octyne
9	Non-	Nonane	Nonene	Nonyne
10	Dec-	Decane	Decene	Decyne

Prefix + Root Word + Primary Suffix (ane/ene/yne) + Secondary suffix (main functional group)

Functional Group	Secondary suffix 🛩	Prefix
Carbonxylic acid (-COOH)	-oic acid	Carboxy-
Sulphonic (-SO3H)	-sulphonic acid	Sulfo-
Ester (-COOR)	-oate	Alcoxycarbonyl-
Acid halide (-COX)	-oyl halide	halo carbonyl-
Amide (-CONH2)	-amide/carboxamide	Carbamoyl-
Cyanide (-CN)	-nitrile	Cyano-
Aldehyde (-CHO)	-al	Oxo/Formyl-
Ketone (>CO)	-one-	Охо-
Alcohol (-OH) 🎸	-ol	Hydoxy-
Amine (-NH2)	-amine 🦯	Amino-
Alkene (C=C) 9	-ene	
Alkyne (C=C)	-yne	
Alkane (C-C)	-ane	
Ether (-OR) 🦯	-	Alkoxy-
halide (-X)	-	Halo-
Nitro (-NO2)	-	Nitro-

COOH 2-Amino proponoic and

feetic and "

Chy-coon - " Chy coon of sod. Aretali Chy coon of methyl autor

Ester (-COOR) - Secondary Suffix - Oate

Oyl halide (-COX) - Secondary Suffix - Oyl halide

$$c_{13} - c_{12} - c_{04} - c_{04} = 2 - iso propy)$$
 but a horid
 $c_{13} - c_{11} - c_{13} = 2 - (1 - melly) ethyl) - 1$

Ether (R-O-R) - Secondary Suffix - ether ethyl methyl ether # CH2-CH2-0-CH2 QH5-0- QH5 = diethylether # iso propy methy ether CH3 C-0-CH3 1-methy ethy methy ether methy) viny ether CH= CH2 -0- CH3 # - ८4ु methy phony ether (Anissle)

Halide (-X)- prefix - Halo, and Nitro (-NO2)- prefix -Nitro

UPAC. Nomenclature \bigcap Organic Compounds (Part 3/3: Hydrocarbons with multiple Functional Groups)

B.Pharm. |POC-I |U1 | L4

Functional Group	Secondary suffix	Prefix	
Carbonxylic acid (- COOH) 📂	-oic acid	Carboxy-	Kab
Sulphonic (-SO3H)	-sulphonic acid	Sulfo-	soni
Ester (-COOR)	-oate 🗲	Alcoxycarbonyl-	is
Acid halide (-COX)	-oyl halide	halo carbonyl-	Hal
Amide (-CONH2)	-amide/carboxamide	Carbamoyl-	Ме
Cyanide (-CN)	-nitrile	Cyano-	Cyanide pee rhi hai
Aldehyde (-CHO) 🛌	-al	Oxo/Formyl-	aur
Ketone (>CO) 😕	-one-	Охо-	ketto
Alcohol (-OH)	-ol	Hydoxy-	Daru pi rahi
Amine (-NH2)	-amine	Amino-	Aur amine
Alkene (C=C)	-ene		
Alkyne (C <u>≡</u> C)	-yne		
Alkane (C-C)	-ane		
Ether (-OR)	ether	Alkoxy-	idhar প
halide (-X)	-	Halo-	halo 🤛
Nitro (-NO2)	-	Nitro-	Kar rhi hai natch ke

Pent-4-ene-1-0 or 4-pentend

l-bromo-4-chlro-3-nitro heptane

#

ethyl-4-mercapto-butanoate

B.Pharm. | POC-I | U 1 | L5

IUPAC System for Carbo-Cyclic Compounds

- Carbocyclic Compounds: Cyclic compounds made of Carbon atoms (Homocyclic Compounds).
 - Saturated Alicyclic compounds- Cycloalkane:
 - Unsaturated Alicyclic Compounds- Cycloalkens
 - Aromatic compounds- Arenes

Cyclobutane

Cyclopropane

Substitution (alphabetically) + Cyclo +Root Word + ane/ene/yne + Suffix (Func. group)

Cyclopentane

Cyclohexane

(م)

(2)

-dimeth

22

thy)-2, 2-dimethy)

TSOMOP

1-ethyl-2-methyl cyclohexane

1-ethyl-2-isopropyl cyclohexane

2-ethyl-1,1-dimethyl cyclopropane

1-(2-methy propyl) cyclopropane

1-(1-cyclopropyl methyl) cyclohexane

1-bromomethyl-2-chloromethyl cyclohexane

4-bromo-1-chloro-2-iodo cyclohexane

2-methyl cyclobutanol

Cyclohexanone

2-(2-oxo cyclopropyl) ethanoic acid

2-amino-3-(2-oxocyclopropyl)propanoic acid

B.Pharm. |POC-I |U 1 | L6

IUPAC System for Carbo-Cyclic Compounds

- Carbocyclic Compounds: Cyclic compounds made of Carbon atoms (Homocyclic Compounds).
 Compounds).
 Saturated Alicyclic compounds- Cycloalkane.
 - Unsaturated Alicyclic Compounds- Cycloalkanes
 - Aromatic compounds- Arenes

Substitution (alphabetically) + Cyclo +Root Word + ane/ene/yne + Suffix (Func. group)

Cyclopropene Cyclobutene Cyclopentene Cyclohexene

1-bromocyclobutene

1,4-dichloro cyclobut-1-ene

4-bromo-3-chloro-3-iodo cyclobut-1-ene

6-bromo-1-chloro cyclohex-1-ene

5-cyclopropyl cyclopent-1,3-diene

3-cyclopentyl cycloprop-1-ene

4-(cycloprop-2-en-1-yl) cyclopent-1-ene

Func-gp > 2/2-7 &-atm

Cyclopent-3-en-1-one

4-bromo cyclobute-1-ene carbonyl chloride

2-(6-nitro cyclohex-3-en-1-yl) ethanoyl chloride

2-(3-ethenyl-4-methylidener cyclopentyl) hex-3eneoyl chloride

Nomenclature of Benzene and Related Compounds

Br

Br

Cyclo-1,3,5-triene

Benzene

1-bromo benzene

NO2 BY

J

1-bromo-4-nitro benzene

4-bromo-1-chloro-2-nitro benzene

1-methyl benzene

(Toluene)

СЦ

1,2-dimethyl benzene

1,3-dimethyl benzene

1,4-dimethyl benzene

Benzene-1-ol

Phenol

Benzene-1-al Benzene carbaldehyde or Benzaldehyde

Methyl phenyl ketone / Acetophenone 1-phenyl ethen-1-one

Benzonitrile

Benzene carbonitrile

Benzene-1-oic acid

Benzoic acid or benzene carboxylic acid

Benzoyl Chloride or Benzene carbonyl chloride

Benzamide or Benzene carboxamide

Methyl Benzene carboxylate

Methoxy Benzene

Amino Benzene Benzenamine

Aniline

Catechol

Benzene-1,2-diol

Benzene-1,2-dicarboxylic acid

