

Hybridization Basic Concepts

B.Pharm. | POC-I | U 2 | L2

Hybridization

 $C6 \rightarrow 1S^2 (2S^2 2P^2)$

H1 → 1S¹

■ hybridization is the process of combining of same or nearly same energy atomic orbitals to create new hybrid orbitals (having the exact same energy level) that can pair electrons to form chemical bonds

As per VBT, C-H bond may be differ due to made by different orbital BUT

 All C-H bonds are equivalent in all respects: same bond length, bond energy.

- Apprincipation is the process of combining of same or nearly same energy atomic orbitals to create new hybrid orbitals (having the exact same energy level) that can pair electrons to form chemical bonds
- It occurs in-
 - Half Orbital 1
 Empty Orbital co-ordinate bond
 Fully filled orbital 1/2 Lone pair
- The No. Of Hybrid orbital = No of intermixing Orbital

- Tot not any
- Signa bond and lone pair electrons are involved in Hybridization
- The formed hybrid orbitals oriented with minimized repulsion between them to maximize the structure stability and make a stable Geometry.

Hybridization sp, sp2, sp3, sp3d, sp3d2, sp3d3 Identify with Super trick

C2H6 Alkane C₂H₄ Alkene C₂H₂Alkyne B.Pharm. POC-I U 2 L3

Hybridization sp, sp2, sp3, sp3d, sp3d2, sp3d3 (Identify with Super trick)

B.Pharm. | POC-I | U 2 | L3

hybridization is the process of combining of same or nearly same energy atomic orbitals to create new hybrid orbitals (having the exact same energy level) that can pair electrons to form chemical bonds

SP3d Hybridization

Trigonal Bipyramidal

SP3d2 Hybridization

Octahedral

SP3d3 Hybridization

Pentagonal Bipyramidal

Regions of Electron Density	Arrangeme	nt	Hybridization			
2		linear	sp			
3		trigonal planar	sp²	120°		
4		tetrahedral	sp ³	109.5°		
5		trigonal bipyramidal	sp ³ d	90°		
6		octahedral	sp³d²	90°		

How Identify Hybridization (Trick)

- 1. By Structure- Sigma Bond & Lone Pair
 - Z = Sigma Bond + no of Lone Pair at Central Atom

How Identify Hybridization (Trick)

- 1. By Structure- Sigma Bond & Lone Pair
 - Z = Sigma Bond + no of Lone Pair at Central Atom

		2	3		4		5	6
		sp	sp	2	sp3		sp3d	sp3d
Valency	2	3		4		5		6
	Ве	В		С		Ν		0
	Mg	Al		Si		Ρ		S

How Identify Hybridization (Trick)

Z = $\frac{1}{2}$ [No. of valence electron in central atom + -ve Charged - +ve Charged + no of monovalent atom

$$\frac{1}{2} N M_{2} = \frac{1}{2} \left[5 + 3 \right]^{2} \frac{9}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} M_{2} 0 \qquad \frac{1}{2} \left[6 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} N C_{3}^{2} \qquad \frac{1}{2} \left[6 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[6 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{1}{2} \left[5 + 2 \right] \qquad \frac{8}{2} - 4 \qquad \text{sp}^{3}$$

$$\frac{1}{2} \left[5 + 2 \right] \qquad \frac{1}{2} \left[5$$

		2	3		4		5	6
		sp	sp	2	sp3		sp3d	sp3d
Valency	2	3		4		5		6
	Be	В		С		Ν		0
	Mg	Al		Si		Ρ		S

