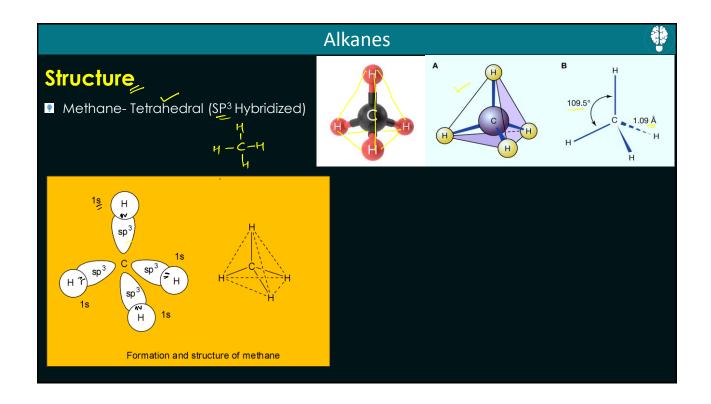
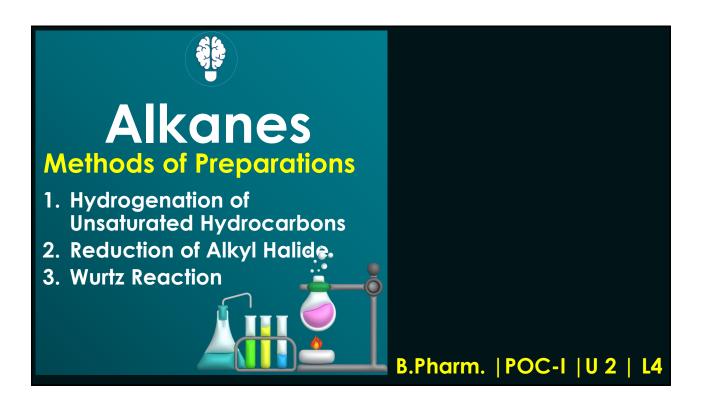
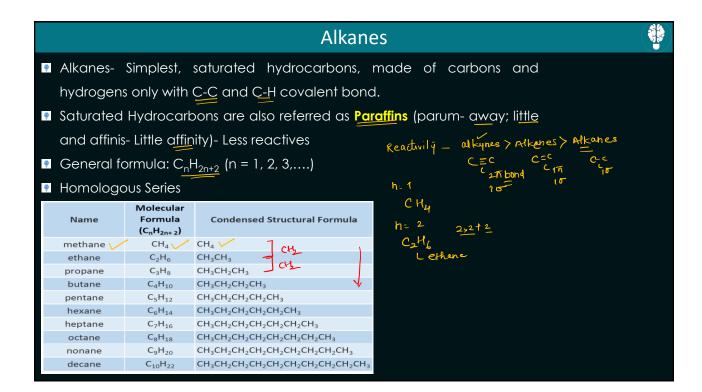
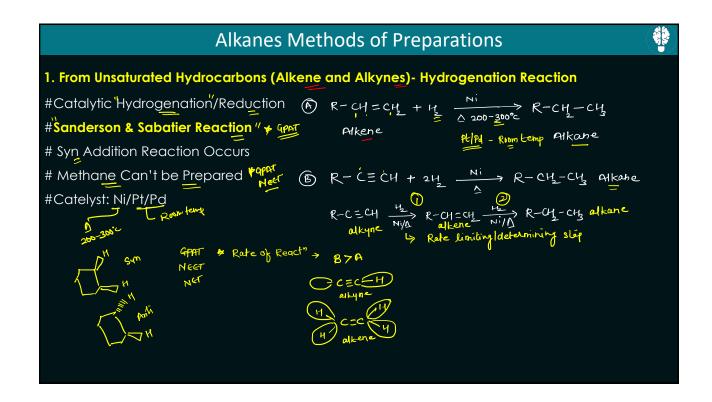
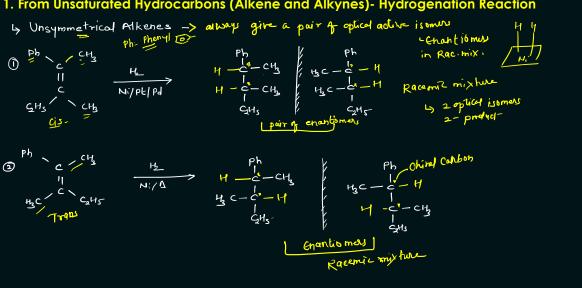

Alkanes

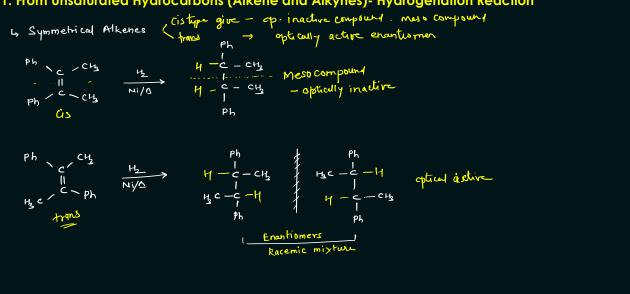

- **✓Introduction**
- √Physical Properties
- **√Isomerism**
- **✓** Structure


B.Pharm. | POC-I | U 2 | L1


Hydrocarbons - C+H (1) Saturated HC > Altanes (2) Unsaturated HC > Alkenes & Alkyne (3) Arometic HC / Arenes


Alkanes						
Physical Properties	Table of Boiling Points of Linear Alkanes:					
1st 4 hydrocarbon (methane, ethane, Propane	Name of Alkane	How many carbons?		Boiling Point in °C	State at (20°C)	Melting Point in °C
and butane are gases, next 13 members are	Methane 1	1	C H ₄	-162	r gas 7	-183
(C5 to C 17) are colorless liquids and rest are	Ethane _	2	C ₂ H ₆	-89	gas	-172
(Co to C 1/) are coloness liquids and rest are	Propane	3	C ₃ H ₈	-42	gas	-188
wax in nature. 2016	n-Butane - n-Pentane	4 5	C ₄ H ₁₀ C ₅ H ₁₂	0 36	gas l liquid	-138 -130
■ They are non-polar nature and dissolved in	n-Hexane	6	C ₆ H ₁₄	69	liquid	-95
They are non-polar nature and asserved in	n-Heptane	7	C ₇ H ₁₆	98	liquid	-91
nonpolar solvents (CCl4, Benzene, etc)	n-Octane	8	C ₈ H ₁₈ C ₉ H ₂₀	126	liquid	-57
Specific gravity and melting point is increased	n-Nonane n-Decane	. 10	C ₁₀ H ₂₀	151 174	liquid liquid	-54 -30
with molecular weight	WML U			1		=1
Branching decreases the boiling point.						
Iso proton C-C-C						




1. From Unsaturated Hydrocarbons (Alkene and Alkynes)- Hydrogenation Reaction

Alkanes Methods of Preparations

1. From Unsaturated Hydrocarbons (Alkene and Alkynes)- Hydrogenation Reaction

From Unsaturated Hydrocarbons (Alkene and Alkynes)- Hydrogenation Reaction

La Selective Hydrogenation

Alkanes Methods of Preparations

2. Reduction of Alkyl Halide

is Methane can be prepared

Mechanism
$$\rightarrow$$
 $\chi_n \rightarrow \zeta_n^{2t} + \frac{2e^-}{=}$

$$cH_3^{\stackrel{\frown}{-}}CI \rightarrow cH_2^{\stackrel{\frown}{+}} + CI^{\stackrel{\frown}{-}}$$

$$cH_3^{\stackrel{\frown}{-}}I \rightarrow cH_2^{\stackrel{\frown}{-}}I \rightarrow CH_3^{\stackrel{\frown}{-}}I$$

2. Reduction of Alkyl Halide

Alkanes Methods of Preparations

2. Reduction of Alkyl Halide

3. Wurtz Reaction # 1 alky halide & 2 molecula

$$R-X+2Na+X-R$$
 dry ether (solvent)
$$R-R+2Na+X-R$$

$$R-R+2NaX$$

$$R-R+2NaX$$

$$R-R+2NaX$$

AFrom Alkyl halide. _ 2mole

Increase the no. of C-Chain.

Used in Ascent of Chain.

Even no C-chain is mainly prepared.

Na metal with Dry ether is used in this reaction.

Alkanes Methods of Preparations

3. Wurtz Reaction Reaction Mechanism

A Free Radical Mechanism

$$2 \text{ Ng} \rightarrow 2 \text{ Ng}^{\dagger} + 2 \text{ e}^{-}$$

$$2 \text{ R} \rightarrow 2 \text{ R}^{\dagger} + 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ R}^{\bullet} + 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ R}^{\bullet} - 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ R}^{\bullet} - 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

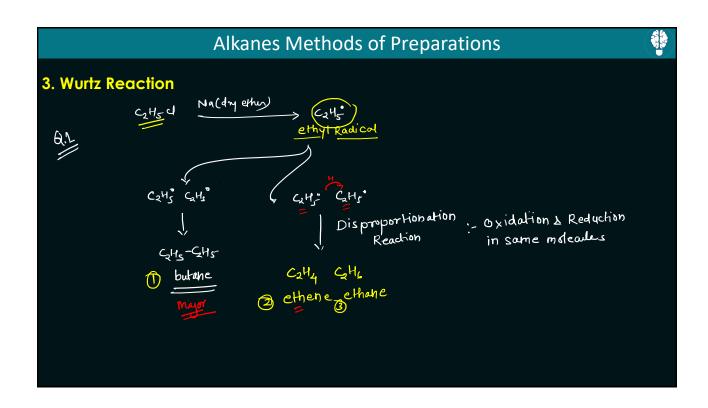
$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

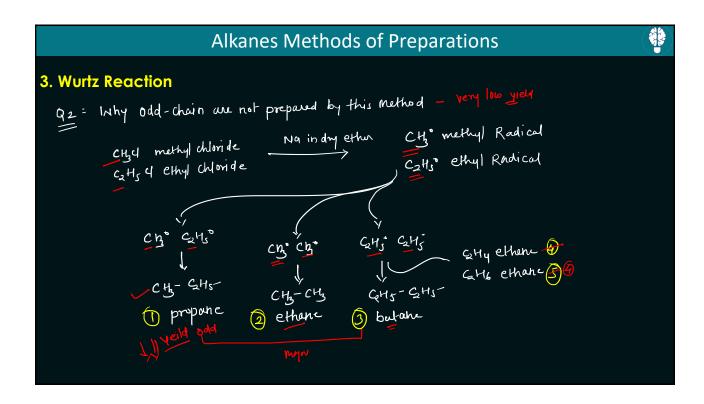
$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

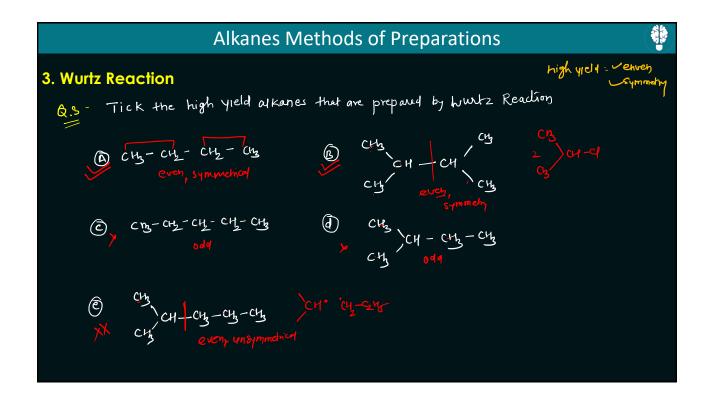
$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

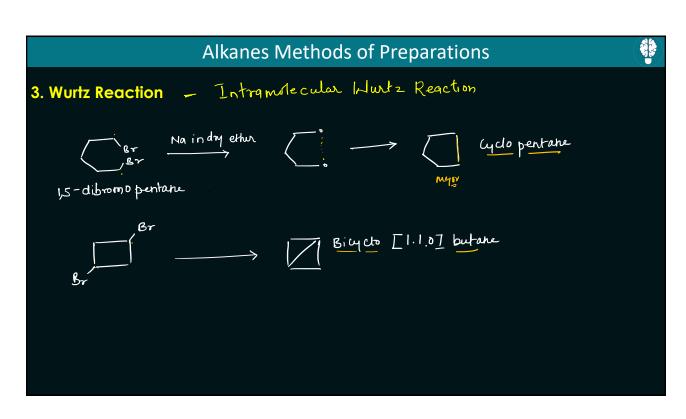
$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

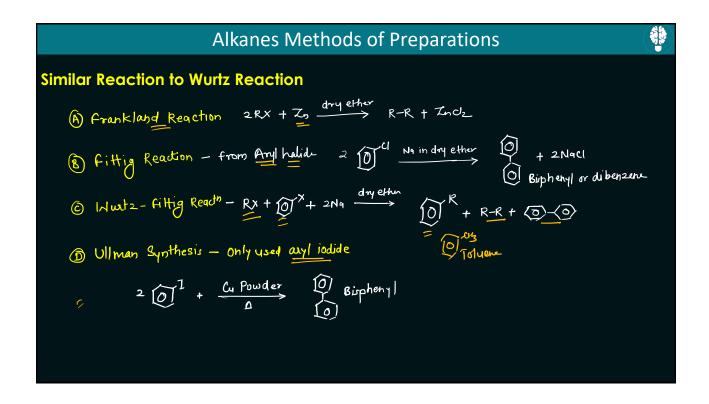
$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

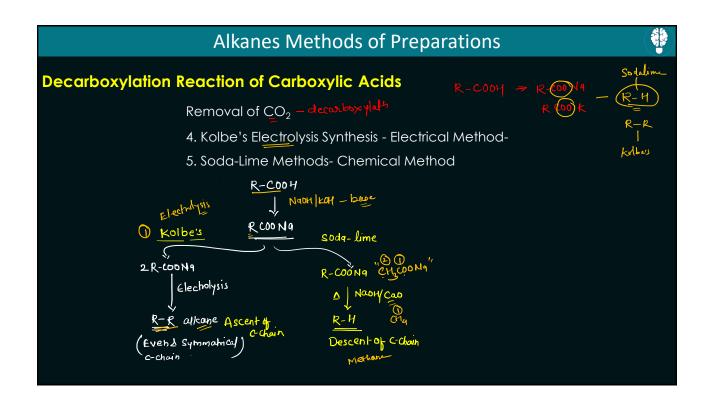

$$2 \text{ R}^{\dagger} + 2 \text{ e}^{-} \rightarrow 2 \text{ e}^{-}$$

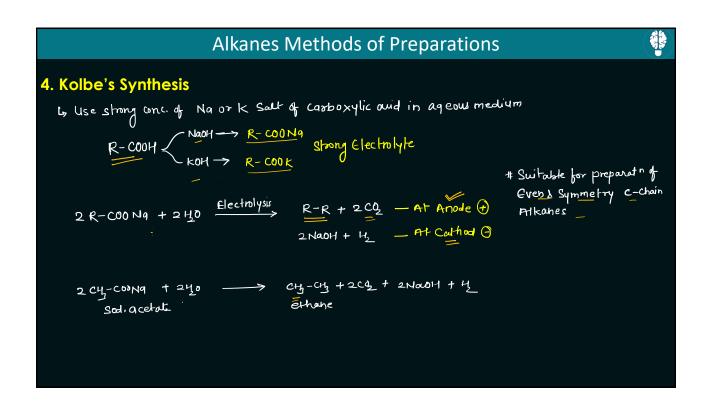

$$2 \text{ e$$


$$2 Ng \longrightarrow 2 Ng^{\dagger} + 2e^{-}$$


$$R - \times \longrightarrow R^{\oplus} + \times^{\bigcirc}$$


$$e^{\Theta} + R^{\frac{C}{N}} \rightarrow R^{-R}$$
 Nucleophilic Substitution
Reaction





4. Kolbe's Synthesis → Reaction Mechanism

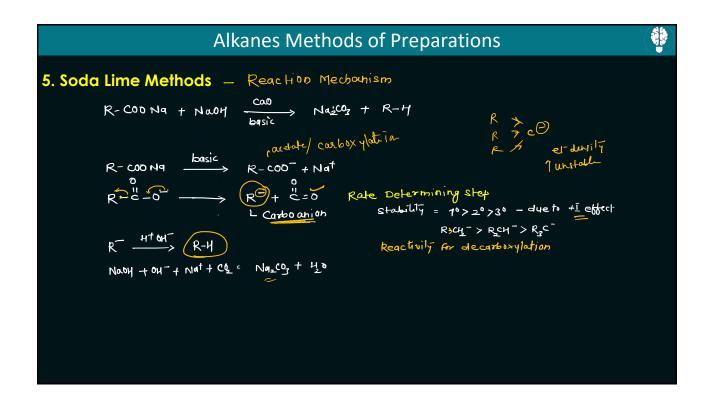
2 CH₃ COO Na
$$\longrightarrow$$
 2 CH₃ COO⁻ +2Na⁺
2H₀ \longrightarrow 2H⁺ + 2OH⁻

2H+ +2e- -> 2H-H

2 Nat + 20H -> 2 NaOH

Alkanes Methods of Preparations

4. Kolbe's Synthesis


4. Kolbe's Synthesis

Alkanes Methods of Preparations

5. Soda Lime Methods

4 Use of Soda > Na 1 Lime - Cao

Alkanes

Methods of Preparations

From Aldehyde/Ketone

- 6. Clemenson Reduction
- 7. Wolf-Kishner Reduction
- 8. Red Phosphorus/Iodine

B.Pharm. | **POC-I** | **U** 2 | **L6**

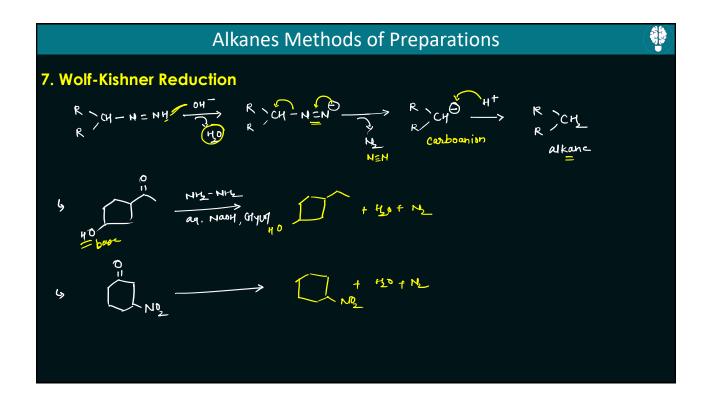
Alkanes Methods of Preparations From Aldehyde or Ketone- Reduction Reduction R-CHO aldehyde ₹-Ë-H R-CHz Alkane R-CO-R Kehone R-E-R R-CH-R 40 ✓ Clemenson Reduction ZWHg R > CH2 Conc. Hy (audic) 411 KOH, GlyCo) (solvent basic Wolf-Kishner Reduction

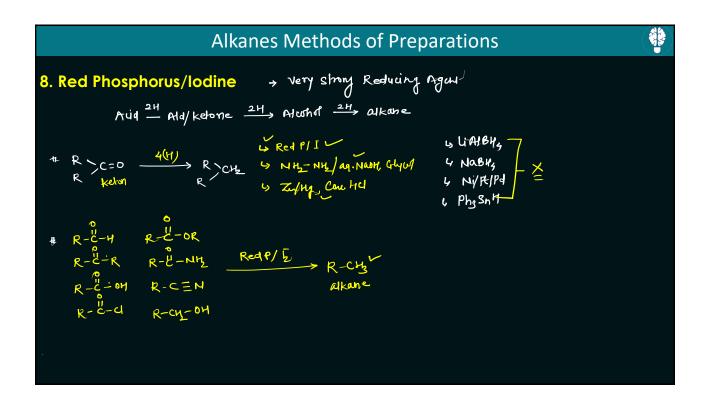
6. Clemenson Reduction -

Reaction Mechanism

Alkanes Methods of Preparations

6. Clemenson Reduction




6. Clemenson Reduction

Alkanes Methods of Preparations

7. Wolf-Kishner Reduction

8. Red Phosphorus/Iodine

Alkanes

Methods of Preparations

9. From Grignard's Reagents10. Corey House Synthesis

B.Pharm. | **POC-I** | **U** 2 | **L7**

- by Organometalic compounds -> C-Metal
- 4 Got Nobel prize 10 1912 with others
- is you can prepare allmost all org. compounds
- 4 Grignard's Reagonts -> cy-mg-4, cys-mg-Br, 6>-mg-4, (cyj-cy-mg-4
- * Preparato of Grignard Reagents

Alkanes Methods of Preparations

9. From Grignard's Reagents

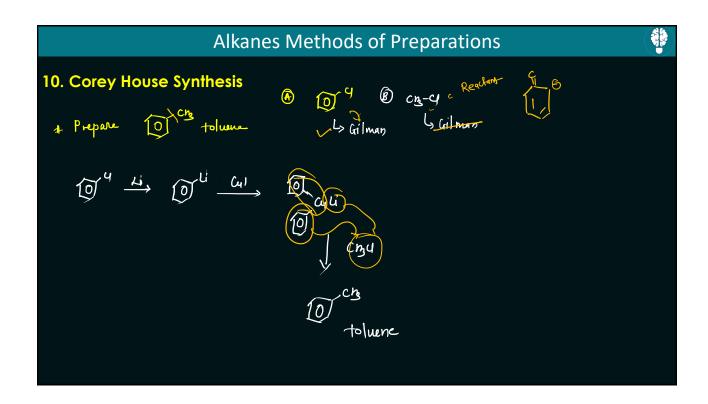
deaving tendency I7 Br > Cl

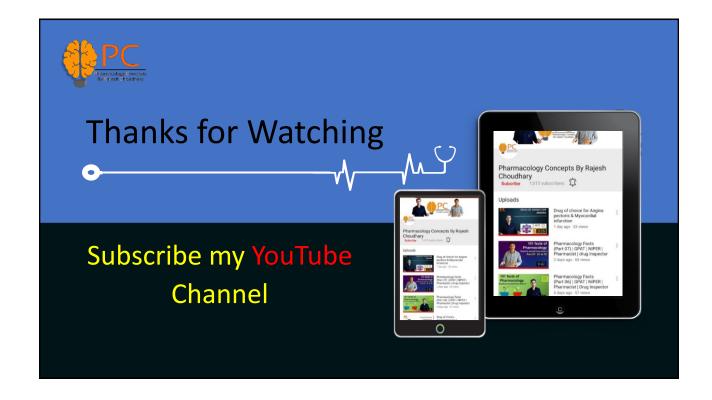
9. From Grignard's Reagents

Alkanes Methods of Preparations

10. Corey House Synthesis

the lunsymmetrical & odd c-thain alkane can be prepared unlike kolbe's & west & React




10. Corey House Synthesis

Alkanes Methods of Preparations

10. Corey House Synthesis

