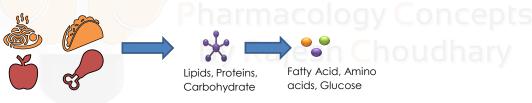
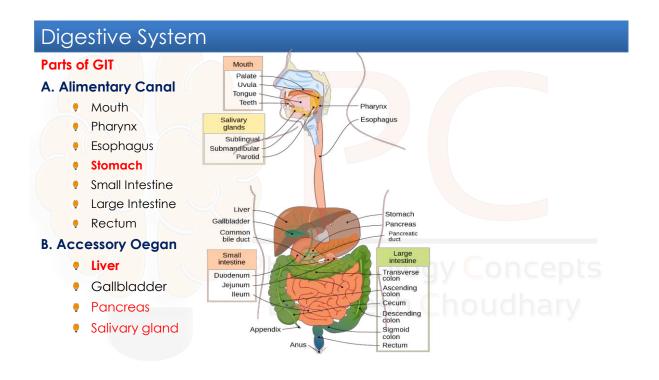
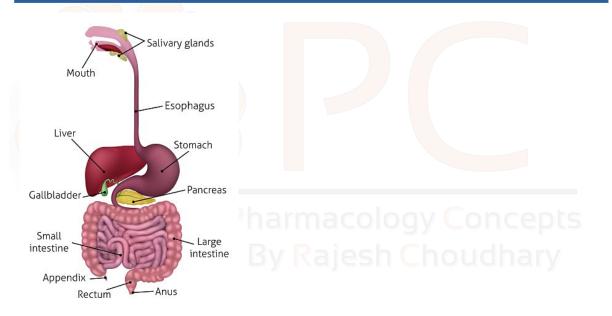
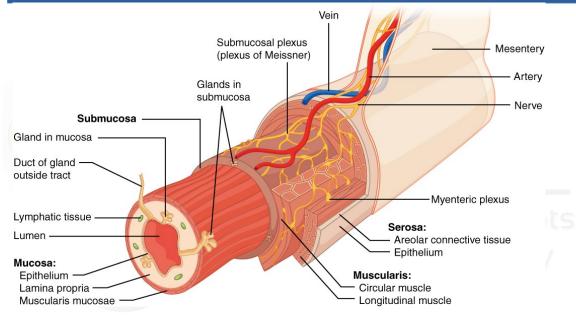
Digestive System Anatomy and Physiology of GIT (Part 1)



- ✓ Introduction
- ✓ Parts of Digestive System
- ✓ Anatomical Structure of GIT
- ✓ Major Function of Digestive System
- ✓ Digestive Enzymes
- www.youtube.com/pharmacologyconceptsbyrajeshchoudhary
- www.pharmacyconcepts.com


Disclaimers: Content of the slide is taken from various books, online contents and google images for the education purpose only.


Digestive System


- System of Digestion.
- The digestive processes gradually break down the foods eaten until they are in a form suitable for absorption.
- The **gastrointestinal tract (GIT** or **alimentary canal**) is an organ system within humans and other animals which involve in
 - Ingestion of food
 - Digestion of foods
 - Absorbed nutrients and essential elements for production od energy and
 - Expels the remaining waste as faces

1

Digestive System

Functions of GI tract

- Ingestion: taking of food into the alimentary tract. i.e. eating & drinking.
- Propulsion: mixes & moves the contents along the alimentary tract.
- Digestion:consist of:
 - Mechanical breakdown of food e.g. mastication (chewing)
 - Chemical digestion of food into small molecules by enzymes.
- Absorption: this is the process by which digested food substances pass through the walls of some organs of the walls of some organs of the alimentary canal into the blood for circulation.
- Elimination: food substances that have been eaten but cannot be digested & absorbed are excreted from the alimentary canal as faeces by the process of **defaecation**.

Digestive Enzyme

SN	Digestive juices and enzymes	Substance digested	Product formed
1	Saliva Amylase	Starch	Maltose
2	Gastric juice Protease (pepsin) and hydrochloric acid Renin	Proteins Milk protein	Partly digested proteins Casine
3	Pancreatic juice Proteases (trypsin) Lipases Amylase	Proteins Fats emulsified by bile Starch	Peptides and amino acids Fatty acids and glycerol Maltose
4	Intestinal enzymes Peptidases Sucrase Lactase Maltase	Peptides Sucrose (sugar) Lactose (milk sugar) Maltose	Amino acids Glucose and fructose Glucose and galactose Glucose
5	Bile from the liver Bile salts	Fats globules	Fat droplets

Digestive System

Digestive Enzyme

	Digestive Enzyme						
		Major Digestive	Major Digestive Enzymes Produced In Site of Release pH Level vary glands Mouth Neutral				
Enzyme		Produced In	Site of Release	pH Level			
	Carbohydrate Digestion						
	Salivary amylase	Salivary glands	Mouth	Neutral			
	Pancreatic amylase	Pancreas	Small intestine	Basic			
	Maltase	Small intestine	Small intestine	Basic			
	Protein Digestion						
	Pepsin	Gastric glands	Stomach	Acidic			
	Trypsin	Pancreas	Small intestine	Basic			
	Peptidases	Small intestine	Small intestine	Basic			
	Nucleic Acid Digestion						
	Nuclease	Pancreas	Small intestine	Basic			
	Nucleosidases	Pancreas	Small intestine	Basic			
	Fat Digestion						
	Lipase	Pancreas	Small intestine	Basic			

Digestive System Physiology of GIT organs (Part 2)

- ✓ Mouth
- √Salivary Glands
- ✓Teeth

Human Anatomy and Physiology

Digestive System

Mouth

Mouth

- The mouth is the first portion of the alimentary canal that receives food and produces saliva.
- The mouth or oral cavity is bounded by muscles and bones:.
 - Anteriorly- by lips
 - Posteriorly-continue with the oropharynx
 - Laterally-muscles of cheeks
 - Superiorly-bony hard palate
 - Inferiorly-muscular tongue & the soft tissues of the floor of the mouth
- The oral cavity is lined throughout with mucous membrane, consisting of stratified squamous epithelium containing small mucus-secreting glands

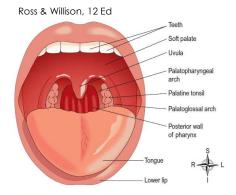


Figure 12.7 Structures seen in the widely open mouth.

Digestive System

Mouth

- The palate forms the roof of the mouth & is divided into the anterior hard palate & posterior soft palate.
- The **uvula** is a curved fold of muscle covered with
- mucous membrane, hanging down from the middle.

Tongue

- The tongue is a muscular (Voluntary Muscles) organ in the mouth, that manipulates food for mastication, and is used in the act of swallowing.
- It is of importance in the digestive system and is the primary organ of taste. And also involve in Speech.

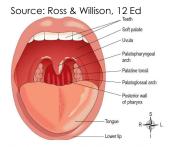
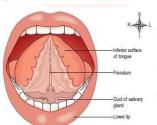
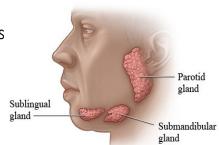



Figure 12.7 Structures seen in the widely open mouth.


Salivary Glands

Pharmacology Concepts
By Rajesh Choudhary

Digestive System

Salivary Glands

- The salivary glands in are exocrine glands that produce saliva through a system of ducts.
- Humans have 3 paired major salivary glands:
 - Parotid
 - submandibular and
 - Sublingual
 - as well hundreds of minor salivary glands.

A) Parotid glands

- The largest of the salivary gland
- The two parotid glands are major salivary glands wrapped around the mandibular ramus in humans.
- They secrete saliva to facilitate mastication and swallowing, and amylase to begin the digestion of starches.
- It enters the oral cavity via the parotid duct.

Pharmacology Concepts By Rajesh Choudhary

Digestive System

B) Submandibular glands

- The submandibular glands are a pair of major salivary glands located beneath the lower jaws, superior to the digastric muscles.
- The secretion produced is a mixture of both serous fluid and mucus, and enters the oral cavity via the submandibular duct.

C) Sublingual glands

- The sublingual glands are a pair of major salivary glands located inferior to the tongue, anterior to the submandibular glands.
- Approximately 5% of saliva entering the oral cavity comes from these glands.
- The secretion produced is mainly mucous in nature

Blood Supply

External carotid artery

Venous Drainage

Jugular veins

Composition of Saliva

About 1.5 litres of saliva is produced daily & it consists of: Water, Mineral salts, An enzyme (Amylase), Mucus, Lysozyme, Immunoglobulins

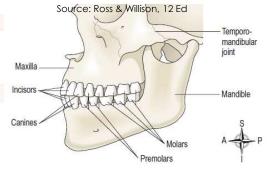
Function of Saliva

- Oral Hygiene: It maintain the oral hygiene and reduce the dental caries, gum disease
- **Digestion:** Produce amylase enzyme which helps in metabolism of carbohydrate (starch to maltose).
- **Lubrication:** moistening food and helping to create a food bolus which easy to pass from mouth to esophagus.

Digestive System

Function of Saliva

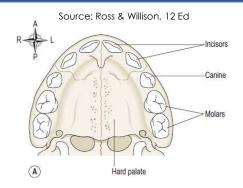
- Role in taste: provide liquid media in which chemicals are carried to taste receptor cells (mostly associated with lingual papillae).
- Maintain the pH


Teeth

Pharmacology Concepts By Rajesh Choudhary

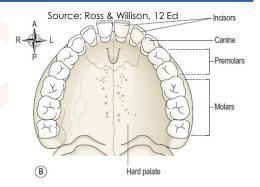
Digestive System

TEETH


- The teeth are embedded in the alveoli or sockets of the alveolar ridges of the mandible and the maxilla
- The **human teeth** function to mechanically break down items of food by cutting and crushing them in preparation for swallowing and digesting

- Types (Adult have 32 teeth)
 - incisors (2x4 = 8)
 - canines (1x4 = 4)
 - premolars (2x4 = 8)
 - Molars (3x4 = 12)

TEETH

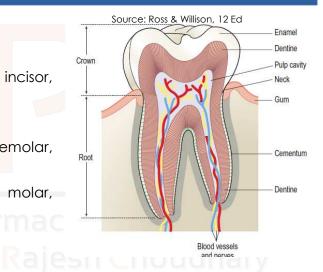

- In babies: the temporary or deciduous or Primary teeth.
- They begin to erupt at about 6 months of age and completed in 24 months
- Total 20 teeth (10 set in each jaw)
- Dental Formula (ICPM)= 2102
 - incisors (2x4 = 8)
 - canines (1x4 = 4)
 - premolars (0x4 = 0)
 - Molars (2x4 = 8)
- two types of incisors centrals and laterals, one canine & two types of molars – first and second.

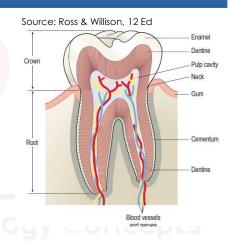
Digestive System

TEETH

- In Adults: the permanent teeth.
- The permanent teeth begin to replace the deciduous teeth in the 6th year of age and this dentition, consisting of 32 teeth, is usually complete by the 21st year
- Total 32 teeth (16 set in each jaw)
- Dental Formula (ICPM)= 2123
 - incisors (2x4 = 8)
 - canines (1x4 = 4)
 - premolars (2x4 = 8)
 - Molars (3x4 = 12)

TEETH


- The permanent teeth are the:
- Two incisor (for cutting)-central incisor, lateral incisor
- One canine (for tearing)
- Two premolar(for crushing)-first premolar, second premolar,
- Three molar (for grinding)-first molar, second molar, and third molar.

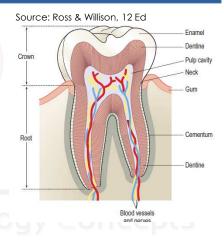

Digestive System

TEETH

Parts of Teeth:

A) Enamel

- Hardest part and most highly mineralized substance of the body.
- 96% of enamel consists of mineral, with water and organic material comprising the rest.
- The normal color of enamel varies from light yellow to grayish white.



TEETH

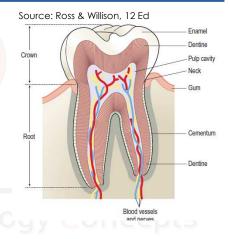
Parts of Teeth:

B) Dentin

- The porous, yellow-hued material is made up of 70% inorganic materials, 20% organic materials, and 10% water by weight
- Dentin is a mineralized connective tissue with an organic matrix of collagenous proteins

Digestive System

TEETH


Parts of Teeth:

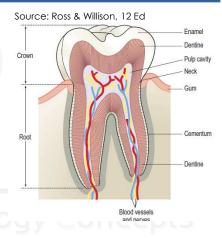
C) Cementum

- Cementum is a specialized bone like substance covering the root of a tooth.
- Its coloration is yellowish and it is softer than dentin and enamel

D) Dental Pulp

- The dental pulp is the central part of the tooth filled with soft connective tissue.
- This tissue contains blood vessels and nerves that enter the tooth from a hole at the apex of the root.

TEETH

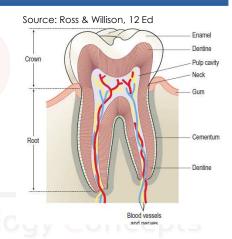

Parts of Teeth:

C) Cementum

- Cementum is a specialized bone like substance covering the root of a tooth.
- Its coloration is yellowish and it is softer than dentin and enamel

D) Dental Pulp

- The dental pulp is the central part of the tooth filled with soft connective tissue.
- This tissue contains blood vessels and nerves that enter the tooth from a hole at the apex of the root.


Digestive System

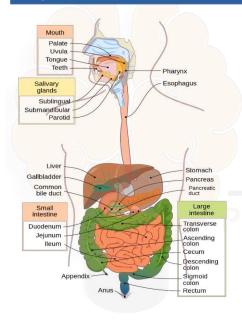
TEETH

- BLOOD SUPPLY: Maxillary arteries
- VENOUS DRAINAGE: Internal jugular veins
- NERVE SUPPLY
 - Maxillary nerves
 - Mandibular nerves

Function of Teeth

- Two incisor -for cutting
- One canine -for tearing
- Two premolar-for crushing
- Three molar-for grinding

Digestive System (Physiology of GIT Organs) (Part 3)

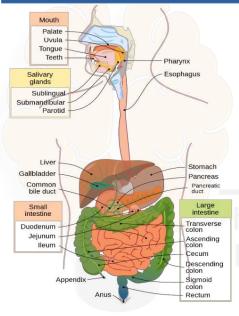


- ✓ Pharynx
- ✓oesophagus
- √Stomach

Human Anatomy and Physiology

Digestive System

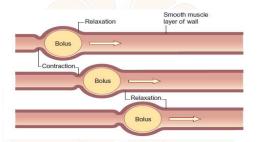
Pharynx


Pharynx

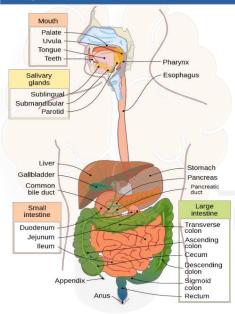
- The pharynx is the part of the throat that is behind the mouth and nasal cavity
- The pharynx is the portion of the digestive tract that receives the food from your mouth and carries to esophagus

narmacology Concepts By Raiesh Choudhary

Digestive System


Oesophagus

Oesophagus


- Also known as food pipe or gullet,
- The esophagus is a muscular tube connecting the throat (pharynx) with the stomach.
- The esophagus runs behind the windpipe (trachea) and heart, and in front of the spine.
 - 🕴 Length :25 cm
 - Diameter:2 cm

Digestive System

Oesophagus

- Most of the muscle is smooth muscle although striated muscle predominates in its upper third
- It has two muscular rings or sphincters in its wall, one at the top and one at the bottom
- A **sphincter** is a circular muscle that normally maintains constriction
- The lower sphincter helps to prevent reflux of acidic stomach content

Oesophagus

FUNCTIONS

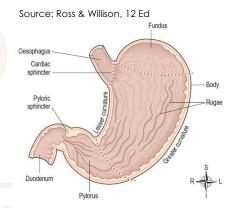
- Formation of a bolus
- Swallowing: Food is ingested through the mouth and when swallowed passes first into the pharynx and then into the esophagus.
- Reducing gastric reflux: Constriction of the upper and lower esophageal sphincters help to prevent reflux (backflow) of gastric contents and acid into the esophagus, protecting the esophageal mucosa.

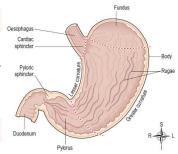
Digestive System

Stomach

Stomach

- The stomach is a J-shaped dilated portion of the alimentary tract situated in the epigastric, umbilical and left hypochondriac regions of the abdominal cavity
- stomach receives food esophagus. Food storage (2-4 h), mechanical and chemical digestion occurs.
- As food reaches the end of the esophagus, it enters the stomach through a muscular valve called the lower esophageal sphincter.




Figure 12.18 Longitudinal section of the stomach.

Digestive System

Stomach

Organs associated with the stomach

- Anteriorly left lobe of liver and anterior abdominal wall
- Posteriorly abdominal aorta, pancreas, spleen, left kidney and adrenal gland
- Superiorly diaphragm, oesophagus and left lobe of liver
- Inferiorly transverse colon and small intestine
- To the left diaphragm and spleen
- To the right liver and duodenum.

Region

- cardiac stomach (or cardiac), By Rajesh Choudhary
- fundic stomach (or funded),
- body of stomach
- pyloric stomach (or Pylorus).

Stomach

FUNCTION & CONTENTS

- DIGESTION
- Involved in mechanical digestion
- Stomach release pepsin a proteases enzyme (protein digesting enzymes)
- Stomach release HCL which kills or inhibits bacteria and provides the acidic pH of 2 for the proteases to work.
- Food is mixed by the stomach through muscular contractions of the wall called peristalsis
- ABSORPTION
- some absorption of certain small molecules and weak acidic drugs, does occur in the stomach through its lining

Digestive System

Stomach

FUNCTION & CONTENTS

- ABSORPTION
- some absorption of certain small molecules and weak acidic drugs, does occur in the stomach through its lining
- Produce intrinsic factor, which helps in Vit B12 absorption

Stomach

FUNCTION & CONTENTS

- GASTRIC JUICE
- About 2 litres of gastric juice are secreted daily by specialised secretory glands in the mucosa
- Gastric acid, gastric juice or stomach acid, is a digestive fluid formed in the stomach and is composed of hydrochloric acid (HCI), potassium chloride (KCI) and sodium chloride (NaCI).
- The acid plays a key role in digestion of proteins, by activating digestive enzymes, and making ingested proteins unravel so that digestive enzymes break down the long chains of amino acids

Digestive System

Stomach

FUNCTION & CONTENTS

- GASTRIC JUICE COMPOSITION
 - Water
 - mineral salts
 - mucus secreted by mucous neck cells in the glands and surface mucous cells on the stomach surface
 - hydrochloric acid
 - intrinsic factor
 - inactive enzyme precursors: pepsinogens secreted by chief cells in the glands.

Stomach

GASTRIC JUICE FUNTIONS

- Water further liquefies the food swallowed.
- Hydrochloric acid:
 - acidifies the food and stops the action of salivary amylase
 - kills ingested microbes
 - provides the acid environment needed for the action of pepsins.
- **Pepsinogens** are activated to pepsins by hydrochloric acid and by pepsins already present in the stomach. Involved in protein digestion. Pepsins have evolved to act most effectively at a very low pH, between 1.5 and 3.5.

Digestive System

Stomach

GASTRIC JUICE FUNTIONS

- Intrinsic factor (a protein) is necessary for the absorption of vitamin B12 from the ileum. (Deficiency leads to pernicious anemia)
- Mucus prevents mechanical injury to the stomach wall by lubricating the contents. It also prevents chemical injury by acting as a barrier between the stomach wall and the corrosive gastric juice hydrochloric acid is present in potentially damaging concentrations and pepsins would digest the gastric tissues.

Stomach

GASTRIC SECRETORY CELLS

- Chief cells: secrete pepsinogen (an inactive enzyme).
- Parietal cells: secrete hydrochloric and (HCI) and "intrinsic factor"
- Mucous cells: secrete mucus and alkaline substances to help neutralize HCl in the gastric juice.
- G cells: secrete a hormone called gastrin, which stimulates the parietal cells and overall gastric
- Blood Supply (Artery): right gastroepiploic artery, left gastroepiploic artery, gastric artery
- Venous Drainage: gastric Vein
- Nervous Supply: ANS and ENS

Digestive System

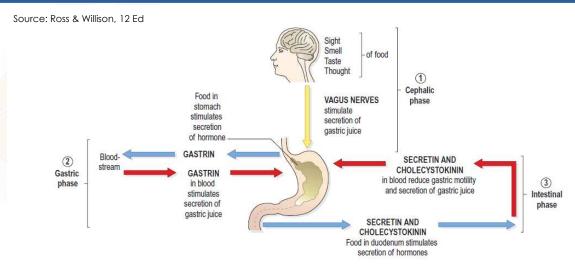
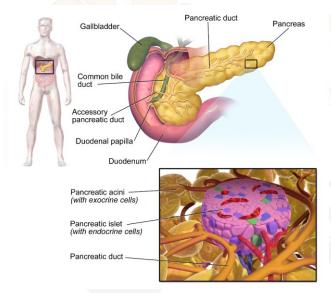


Figure 12.22 The three phases of secretion of gastric juice.

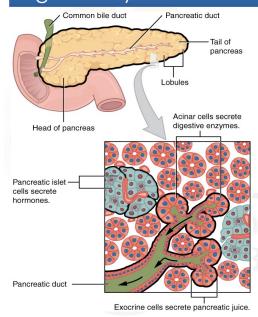
Digestive System (Physiology of GIT Organs) (Part 4)



- ✓ Pancreas
- ✓ Liver
- √Gall Bladder

Human Anatomy and Physiology

Digestive System


Pancreas

Pancreas

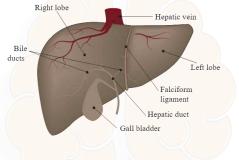
- The pancreas is a **glandular organ** in the digestive system and **endocrine system** of vertebrates.
- It is located in the abdominal cavity behind the stomach, having length about 15 cm.
- It is an endocrine gland producing several important hormones, which circulate in the blood and regulate the metabolic function.

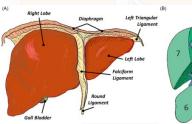
Digestive System

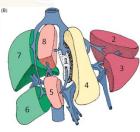
Pancreas

Endocrine Hormone

- a alpha cells secrete glucagon (increase glucose in blood)
- β beta cells secrete insulin (decrease glucose in blood)
- **δ delta cells secrete** somatostatin (regulates/stops a and β cells)
- γ (gamma) cells, secrete pancreatic polypeptide

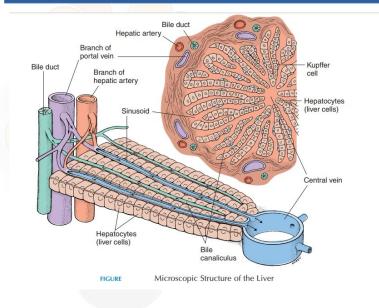

Pancreas


Pancreatic Juice


- Secreted by exocrine glands and consists of water, salts, enzymes (amylase, lipase, nuclease), and inactive enzyme precursor (trypsinogen, chymotrypsinogen)
- Pancreatic juice is basic (pH 8) due to bicarbonate ions. Acid stomach contents mixed with Pancreatic, bile or intestinal content pH raised between 6 to 8 for optimal activity of pancreatic enzyme, amylase, and lipase

Digestive System

Liver


Liver

- The liver is the largest and heaviest gland in the body, weighing between 1 and 2.3 kg.
- Reddish brown in color
- It is situated in the upper part of the abdominal cavity occupying the greater part of the right hypochondriac region, part of the epigastric region and extending into the left hypochondriac region
- 4 major lob: Right, Left, Caudate, and Quadrate lob

Digestive System

Liver

- Organs associated with the liver
- Superiorly and anteriorly diaphragm and anterior abdominal wall
- Inferiorly stomach, bile ducts, duodenum, hepatic flexure of the colon, right kidney and adrenal gland
- Posteriorly oesophagus, inferior vena vertebral column and diaphragm
- Laterally lower ribs and diaphragm.

Digestive System

Liver

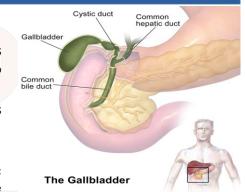
Function of the Liver

Metabolism

- Carbohydrate- Regulate the blood sugar level by glycogenesis, gluconeogenesis, glycogenolysis pathway
- Fat metabolism- Break down of fat
- Protein metabolism- Transamination and produce new nonessential amino acid, deamination and produce urea and also cause breakdown of nucleic acid and produce uric acid
- It may cause the breakdown of insulin and other hormone and bilirubin via glucuronidation, facilitating its excretion into bile

Liver

Function of the Liver

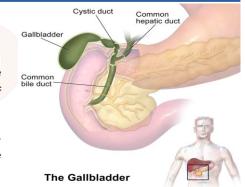

- Synthesis of plasma proteins. These are formed from amino acids and include albumins, globulins and blood clotting factors
- Breakdown of erythrocytes, and defense against microbes by hepatic macrophages (Kupffer Cells)
- Detoxification of drug or toxic substance
- Storage for glycogen, Fat soluble vitamins (Vit A,D,E,K), iron, copper, and water soluble vitamin B12.
- Heat production
- Secretion of bile

Digestive System

Gall Bladder

Gall Bladder

- The gallbladder is a small hollow or gan where bile is stored and concentrated before it is released into the small intestine
- In humans, the pear-shaped gallbladder lies beneath the liver
- The gallbladder has a capacity of about 50 ml
- Bile flows through small vessels into the larger hepatic ducts and ultimately though the cystic duct into the gallbladder, where it is stored


by Kajesii Ciloddilary

Digestive System

Gall Bladder

Function of the Gall Bladder

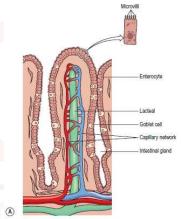
- The main purpose of the gallbladder is to store bile, also called gall, needed for the digestion of fats in food.
- Concentration of the bile by up to 10- or 15-fold, by absorption of water through the gall bladder
- Release of stored bile.

Digestive System (Physiology of GIT Organs) (Part 5)

(PC

- ✓ Small Intestines
- ✓ Large Intestine

Human Anatomy and Physiology


Digestive System Liver Intestine Stomach Gallbladder **Pancreas Small Intestine** Common Pancreatic Duodenum bile duct duct Jejunum Large Small intestine intestine lleum Transverse Duodenum Large Intestine colon Jejunum Ascending Cecum Ileum colon Colon: Ascending, transverse, Cecum Descending, and Sigmoid Colon Descending colon Rectum Appendix -Sigmoid Anus oudhary colon Anus Rectum

Small Intestine

Parts

- Duodenum- Short structure, C-Shaped, 20-25 cm length
- Jejunum- 2.5 m long, contains villi
- **Ileum-** 3 m long, contains villi for absorption, at end ileocaecal valve, which controls the flow of material from the ileum to the caecum, the first part of the large intestine, and prevents backflow.

Blood Supply: Superior mesenteric arteries & veins supply the whole part of small intestine.

Intestinal Juice

• 1.5 L intestinal juice (alkaline) are secreted daily, consist of water, mucus, and mineral salts.

Digestive System

Small Intestine

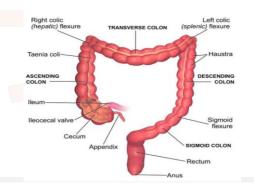
Function of Small Intestine

- onward movement of its contents by peristalsis, which is increased by parasympathetic stimulation
- completion of chemical digestion of carbohydrates, protein and fats in the enterocytes of the villi
- protection against infection by microbes that have survived the antimicrobial action of the hydrochloric acid in the stomach, by both solitary and aggregated lymph follicles
- secretion of the hormones cholecystokinin (CCK) and secretin
- absorption of nutrients.
- Positively host's immune system by microbial flora

Small Intestine

Chemical Digestion

- When **acid chyme** passes into the small intestine it is mixed with pancreatic juice, bile and intestinal juice, and is in contact with the enterocytes of the villi. The digestion of all nutrients is completed:
 - carbohydrates are broken down to monosaccharides
 - proteins are broken down to amino acids
 - fats are broken down to fatty acids and glycerol.


Pharmacology Concepts
By Rajesh Choudhary

Digestive System

Large Intestine

Chemical Digestion

- The large intestine, also known as the large bowel or colon, is the last part of the gastrointestinal tract and of the digestive system in vertebrates.
- Water is absorbed here, and the remaining waste material is stored as feces before being removed by defecation.

Large Intestine

FUNCTIONS

- The large intestine absorbs water and any remaining absorbable nutrients from the food before sending the indigestible matter to the rectum.
- The colon absorbs vitamins that are created by the colonic bacteria, such as vitamin K.

Gut flora

- The large intestine houses over 700 species of bacteria that perform a variety of functions.
- The large intestine absorbs some of the products formed by the bacteria inhabiting this region.
- Undigested polysaccharides (fiber) are metabolized to shortchain fatty acids by bacteria in the large intestine

Digestive System

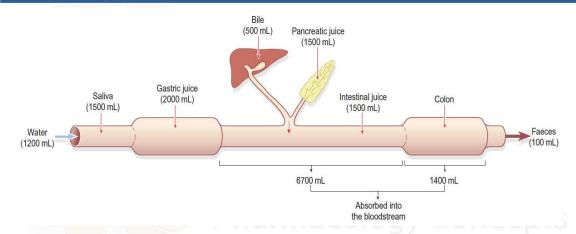
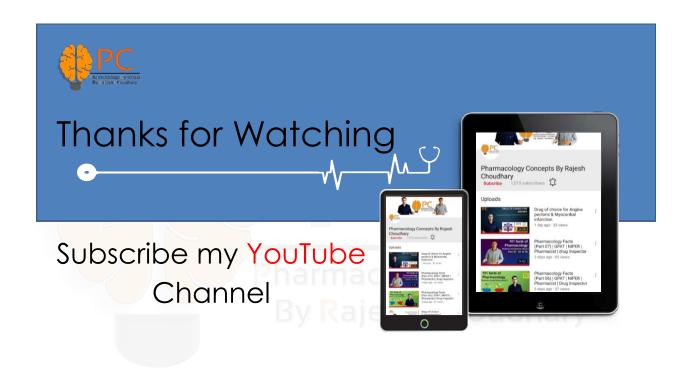



Table 12.2 Summary showing the sites of digestion and absorption of nutrients

	Mouth	Stomach	Small intestine		
			Digestion	Absorption	urge intestine
Carbohydrate	Salivary amylase: digestible starches to disaccharides	Hydrochloric acid: denatures and stops action of salivary amylase	Pancreatic amylase: digestible starches to disaccharides Sucrase, maltase, lactase (in enterocytes): disaccharides to monosaccharides (mainly glucose)	Into blood capillaries of villi	~ <u>-</u>
Proteins		Hydrochloric acid: pepsinogen to pepsin Pepsin: proteins to polypeptides	Enterokinase (in enterocytes): chymotrypsinogen and trypsinogen (from pancreas) to chymotrypsin and trypsin Chymotrypsin and trypsin: polypeptides to di- and tripeptides Peptidases (in enterocytes): di- and tripeptides to amino acids	Into blood capillaries of villi	~ _
Fats		-	Bile (from liver): bile salts emulsify fats Pancreatic lipase: fats to fatty acids and glycerol Lipases (in enterocytes): fats to fatty acids and glycerol	Into the lacteals of the villi	-
Water	-	Small amount absorbed here		Most absorbed here	Remainder absorbe
Vitamins	_	Intrinsic factor secreted for vitamin B ₁₂ absorption	-	Water-soluble vitamins absorbed into capillaries; fat-soluble ones into lacteals of villi	Bacteria synthesise vitamin K in colo absorbed here

