T- Test (Part 1/2) (Parametric Test)

Concepts

- Formulas for different Condition
- T-Test for Random Sample
 - T-Test for Observation of Correlation

Biostatistics & Research Methodology B Pharm 8th Sem | M. Pharm. | PhD

]	[- T	est
t Table	t.50	t.75	t.so	t.85	t _{.90}	t.95	t _{.975}	t.99	t.995	t.999	t.9995
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.000
df									\smile		
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5 841	10.215	12.924
(4)	0.000	0.741	0.941	_1.190	1.533	2.132	2,776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
্র	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3,792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1,699	2.045	2.462	2,756	3.396	3.659
301	0.000	0.683	0.854	1.055	1.310	1,697	2.042	2.457	2,750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3,460
80	0.000	0.678	0.846	1 043	1 292	1 664	1,990	2 374	2,639	3 195	3 4 16
100	0.000	0.677	0.845	1 042	1 290	1 660	1.984	2 364	2.626	3 174	3,390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1,962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1,960	2.326	2.576	3.090	3.291
<u>.</u>	0%	50%	60%	70%	80%	90%	(95%)	98%	99%	99.8%	99.9%
	070	5070	0070	1070	Confie	topcol (0070	30 /0	0070	00.070	00.070

2

T- Test (Part 2/2) (Parametric Test)

Paired and Unpaired T Test

Biostatistics & Research Methodology B Pharm 8th Sem | M. Pharm. | PhD

									-	T- T	est
t Table cum. prob one-tail two-tails	t.50 0.50 1.00	t. ₇₅ 0.25 0.50	t.so 0.20 0.40	t.ss 0.15 0.30	t _{.90} 0.10 0.20	t.95 0.05 0.10	t.975 0.025 0.05	t.99 0.01 0.02	<i>t</i> .995 0.005 0.01	t.999 0.001 0.002	t.9995 0.0005 0.001
df 1 2 3 4 5	0.000 0.000 0.000 0.000 0.000	1.000 0.816 0.765 0.741 0.727	1.376 1.061 0.978 0.941 0.920	1.963 1.386 1.250 1.190 1.156	3.078 1.886 1.638 1.533 1.476	6.314 2.920 2.353 2.132 2.015	12.71 4.303 3.182 2.776 2.571	31.82 6.965 4.541 3.747 3.365	63.66 9.925 5.841 4.604 4.032	318.31 22.327 10.215 7.173 5.893	636.62 31.599 12.924 8.610 6.869
6 7 9 10	0.000 0.000 0.000 0.000 0.000 0.000	0.718 0.711 0.706 0.703 0.700 0.697	0.906 0.896 0.889 0.883 0.879 0.876	1.134 1.119 1.108 1.100 1.093 1.088	1.440 1.415 1.397 1.383 1.372 1.363	1.943 1.895 1.860 1.833 1.812 1.796	2.447 2.365 2.306 2.262 2.228 2.228 2.201	3.143 2.998 2.896 2.821 2.764 2.718	3.707 3.499 3.355 3.250 3.169 3.106	5.208 4.785 4.501 4.297 4.144 4.025	5.959 5.408 5.041 4.781 4.587 4.437
12 13 14 15 16 17	0.000 0.000 0.000 0.000 0.000 0.000	0.695 0.694 0.692 0.691 0.690 0.689	0.873 0.870 0.868 0.866 0.865 0.865	1.083 1.079 1.076 1.074 1.071 1.069	1.356 1.350 1.345 1.341 1.337 1.333	1.782 1.771 1.761 1.753 1.746 1.740	2.179 2.160 2.145 2.131 2.120 2.110	2.681 2.650 2.624 2.602 2.583 2.567	3.055 3.012 2.977 2.947 2.921 2.898	3.930 3.852 3.787 3.733 3.686 3.646	4.318 4.221 4.140 4.073 4.015 3.965
18 19 20 21 22 23	0.000 0.000 0.000 0.000 0.000 0.000	0.688 0.688 0.687 0.686 0.686 0.685	0.862 0.861 0.860 0.859 0.858 0.858	1.067 1.066 1.064 1.063 1.061 1.060	1.330 1.328 1.325 1.323 1.321 1.319	1.734 1.729 1.725 1.721 1.717 1.714	2.101 2.093 2.086 2.080 2.074 2.069	2.552 2.539 2.528 2.518 2.508 2.500	2.878 2.861 2.845 2.831 2.819 2.807	3.610 3.579 3.552 3.527 3.505 3.485	3.922 3.883 3.850 3.819 3.792 3.768
24 25 26 27 28	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.685 0.684 0.684 0.684 0.683 0.683	0.857 0.856 0.856 0.855 0.855 0.855	1.059 1.058 1.058 1.057 1.056 1.055	1.318 1.316 1.315 1.314 1.313 1.311	1.711 1.708 1.706 1.703 1.701 1.699	2.064 2.060 2.056 2.052 2.048	2.492 2.485 2.479 2.473 2.467 2.462	2.797 2.787 2.779 2.771 2.763 2.756	3.467 3.450 3.435 3.421 3.408 3.396	3.745 3.725 3.707 3.690 3.674 3.659
30 40 60 80 100	0.000 0.000 0.000 0.000 0.000 0.000	0.683 0.681 0.679 0.678 0.677	0.854 0.851 0.848 0.846 0.845	1.055 1.055 1.050 1.045 1.043 1.042	1.311 1.303 1.296 1.292 1.290	1.699 1.697 1.684 1.671 1.664 1.660	2.043 2.042 2.021 2.000 1.990 1.984	2.402 2.457 2.423 2.390 2.374 2.364	2.750 2.704 2.660 2.639 2.626	3.385 3.307 3.232 3.195 3.174	3.646 3.551 3.460 3.416 3.390
	0.000	0.675	0.842 0.842 60%	1.037 1.036 70%	1.282 1.282 80% Confid	1.646 1.645 90% dence Lo	1.962 (.960) 95%)	2.330 2.326 98%	2.581 2.576 99%	3.098 3.090 99.8%	3.300 3.291 99.9%

T- Test

3. Paired T-Test

Q. Check the test drug A is effective or not by following Data at 95% Of confidence level (t0.05, 4 = 2.77) Blood Suger Level in mg/dL on -

X (before drug A): 110, 120, 115, 120, 120 Y (After drug A): 90, 110, 80, 100, 110

x	Y	d (X-Y)	d-d	(d-d)2
110	90	20	1~ 7	1
120	110	10 🗸	-9 🗸	81
115	80	35	16 🖌	256
120	100	20	1	1
120	110	10	-9	81∽
	4 (95/5 = d 19	出	420

T- Test

4. Unaired T-Test

Q. Check the test drug A and drug B has same effective or not by following Data at 95% Of confidence level (t0.05, 8 = 2.306)

Body weight reduction Level in Kg on -

X1 (drug A): 8, 10, 12, 10, 10 m - S X2 (drug B): 4, 4, 3, 2, 2 n, : S

$$(\widehat{D} Assum p Hon \rightarrow 4 \widehat{A}_{0} \times \overline{X}_{1} \neq \overline{X}_{2}, \text{ bas different effect}$$

(a) sig. level
$$\rightarrow$$
 (c) $to os, 8 = 2.306$ is $t+ab$
(b) sig. level \rightarrow (c) $to os, 8 = 2.306$ is $t+ab$
(c) $t+ab$
(c) $to os, 8 = 2.306$ is $t+ab$
(c) $t+$

$$S = \sqrt{\frac{\xi(x_1 - \overline{x})^2 + \xi(x_2 - \overline{x})^2}{p_1 + p_2}}$$

T- Test

4. Unaired T-Test

Q. Check the test drug A and drug B has same effective or not by following Data at 95% of confidence level (t0.05, 8 = 2.306) Body weight reduction Level in Kg on -X1 (drug A): 8, 10, 12, 10, 10 X2 (drug B): 4, 4, 3, 2, 2 (1) Assumption \Rightarrow H_0 $\overline{x_1} = \overline{x_2}$, some effective (1) Assumption \Rightarrow H_0 $\overline{x_1} \neq \overline{x_2}$, has different effect-(2) sig. level \Rightarrow st., toos, $g = 2 \cdot 306$ is t+ab (3) calculation \Rightarrow $t = \frac{|\overline{x_1} - \overline{x_2}|}{S} \cdot \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$ $S = \sqrt{\frac{\xi(x_1 - \overline{x})^2 + \xi(x_2 - \overline{x_2})^2}{n_1 + n_2}}$

T- Test												
4. Una	ired T-	Test					Significantly (P<0.03)					
Q. Chec level (tC Body w X1 (dru X2 (dru	ck the te 0.05, 8 = eight re g A): 8, g B): 4,	est drug 2.306) duction 10, 12, 1 4, 3, 2,	A and Level ir 10, 10 2	drug B 1 Kg on	has sar -	ne effec	ctive or not by following Data at 95% Of confidence Control to the second state of t					
	X1	$\begin{array}{c} X1-\overline{X1} \\ \overline{Y_1-10} \end{array}$	(X1- X1) ²	X2	x2-x2	(X2- X2) ²	$= \sqrt{\frac{8+4}{8+4}} = \sqrt{\frac{12}{2}} = \sqrt{1.6} = (1.22)$					
1	8	-2	4	4.	1 (1	s+5-5- / 8					
2	10	Q	0	4 -	.1 .	1	$t = \frac{10-3}{\sqrt{55}}, \sqrt{55}, \frac{7}{5}, \sqrt{\frac{25}{12}}$					
3	12 -	2	4	3	0	0	J.22 \$ \$+5 1.22 \$ 10					
4	10	0	0	2	-1	1	$= \frac{7}{1\cdot 2^2} \sqrt{2\cdot 5} = \frac{7}{1\cdot 2^2} \sqrt{1\cdot 5^8} = \frac{11\cdot 2^6}{1\cdot 2^3} = \frac{11\cdot 2^6}{1\cdot 2^5} =$					
5	10.	0	0	2	-1	1	(tiple 9)					
Sum-	<u>60</u>	Ň	8	15		4	(a) Conclusion > tcal (a) > trab (2.30)					
×1:= 5015			×2- 15/5				> Ho rejected X, 7 X2, 11 2 > droug A is more effective that B					