Probability (Part 1)

Basics Concepts Equation

Biostatistics & Research Methodology B Pharm 8th Sem | M. Pharm. | PhD

Probability

- Probability means possibility or Chance to happen
- It is a branch of mathematics that deals with the occurrence of a random event
- P = 0 to 1

Probability of event to happen P(E) = Number of favorable outcomes

Total Number of outcomes P(E) = A/S

 $P(Head) = 1 (head)/2 = \frac{1}{2} = 0.5$

p + q = 1

- P-Probability of Success
- q Probability of Failure

Probability

$$P(E) = n(A)/S$$

Example 4. A First aid box contains 10 tab of paracetamol and 20 tab of aspirin,

1. what is the probability of paracetamol to picked from box in first event?

$$P (pcm) = 10/30 = 1/3 = 0.33$$

2. . what is the probability of aspirin to picked from box in second event

P = 20 / 30 - 1 = 20 / 29

99

Probability Distribution (Part 2)

Binomial Disribution

Biostatistics & Research Methodology B Pharm 8th Sem | M. Pharm. | PhD

Binomial Distribution

- The binomial distribution is a discrete probability distribution that describe only two possible results (Fail of Success) in a fixed number of independent trials or experiments, where each trial has only two possible outcomes and the probability of success remains constant throughout all trials.
- For example, flipping a coin is a binomial experiment since there are only two <u>possible outcomes</u> (heads or tails) and the probability of getting heads (success) is always 0.5.

Binomial Distribution

9:0.9

- A single outcome (Success or Fail) test is also called a "Bernoulli trial for Bernoulli experiments. And series of experiments is called "Bernoulli process"
- Some important properties of the binomial distribution include:

n= no of briefs

- Mean, µ = np
- Variance, $\sigma^2 = npq$
- Standard Deviation $\sigma = \sqrt{(npq)}$
- As the number of trials increases, the binomial distribution approaches a normal distribution.

Binomial Distribution

- Example 1: roll the coin 3 time, so find out the possibilities of
- a) exactly 1 headsb) at least 2 heads:
- n=3 9=1-P=1-2=2 o=1 P=16 n-10=3-1=2

 $P_{(r)} = {}^{n}C_{r} \times q^{(n-r)} \times p^{r}$ ${}^{n}C_{r} = n! / r! \times (n-r)$

$$P_{T} = \frac{n_{c_{T}} \cdot q^{(n_{T})} \cdot p^{T}}{\prod_{r} (n_{r} \cdot r)} + q^{n_{r} - T} \cdot p^{T}}$$

$$= \frac{3 \gamma Z \times 1}{1 \gamma Z \times 1} \cdot (\frac{1}{2})^{2} \cdot (\frac{1}{2})^{1}$$

$$= 3 \times \frac{1}{4} \times \frac{1}{2}$$

$$= (\frac{3}{4})$$

Probability Distribution (Part 3)

Poisson's Distribution

Biostatistics & Research Methodology B Pharm 8th Sem | M. Pharm. | PhD

Poisson Distribution

- Example: 10% tablet will be defective produced by dry granulation method. Find out the probability that in a 20 tablet chosen at random, exactly 6 will be defective by using Poisson distribution
- $P(\sigma) = \frac{e^{-m}m^{2}}{r_{1}}$ $P = \frac{160}{10} = 10$ $P = \frac{160}{10} = \frac{160}{10}$

Probability Distribution (Part 4)

Normal Distribution

Biostatistics & Research Methodology B Pharm 8th Sem | M. Pharm. | PhD

Normal Distribution The Normal distribution curve is Bell Shaped 50-It is also called Gaussian distribution 50.1. Symmetrical Central Tendency located at the center of graph I a normal distribution with a mean 0 and standard deviation of 1 is called the standard normal $\overline{\mathbf{X}}$ +2σ distribution --mean Mean = Mode = Median Two Tails of the distribution extended indefinitely but never touch the X axis

Normal Distribution The % distribution of area under standard normal curve is broadly as follow: • ±1σ-68.27% ±2σ – 95.44% ±3σ – 99.73% This is observed by Z score 7 -35 7430 $\overline{p} = 1\sigma$ ¥ +20 epp. dat 9 **≫ ≠**2σ F10 men $Z = \frac{X - \bar{X}}{\sigma}$ 68.221 5.2. 99.73-

Normal Distribution

This is observed by Z score

z-V

7 2

$$Z = \frac{\Lambda - \lambda}{\sigma}$$

- Z = 0, data = mean
- Z = 1, represents an element or data, which is 1 standard deviation greater than the mean; a zscore equal to 2 signifies 2 standard deviations greater than the mean; etc

Normal Distribution

Q. Avg % of the class (n =100) is 55% with variance of 16%, calculate the probability that how many students have > 60%

$$Z = \frac{X - \overline{X}}{\sigma}$$

$$Z = \frac{X - \overline{X}}{\sigma}$$

$$Z = \frac{Y - \overline{X}}{\sigma}$$

$$Z = \frac{Y$$

	Nor	m	na	D	istr	rib	uti	on			
		1				STAN	DARD	ORMAL	TABLE	E (Z)	
		/			Entri	es in the t	able give	the area	a under th	e curve	
	between the mean and z standard deviations above the mean. For example, for z = 1.25 the area under										
	-3 -2 -1 0 1 $\frac{1}{2}$ 2 3 the curve between the mean (0) and z is 0.3944.								,		
					L					-	-
	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
			0.0040	0.0080	0.0120	0.0160	0.0190	0.0239	0.0279	0.0319	0.0359
0.3944			0.0438	0.0478 0.0871	0.0517 0.0910	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
			0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
	0.4 0.		0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
			0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
			0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
			0.2910	0.2939	0.2673	0.2704	0.2/34	0.2764	0.2794	0.2823	0.2852
			0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
			0.3438	0.3461	0.3485	0.3508	0.3513	0.3554	0.3577	0.3529	0.3621
			0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
			0.3869	0.3888	0.3907	0 3925	0.3944	0.3962	0.3980	0.3997	0.4015
			0.4049	0.4066	0.4082	0.4099 0.4251	0.4115	0.4131 0.4279	0.4147	0.4162	0.4177
			0.4207	0.4222	0.4236	0.4382	0.4205	0.4279	0.4292	0.4306	0.4319
			0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
	1.7 0.		0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
			0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
			0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
			0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
			0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
			0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
			0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
			0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
			0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
			0.4905	0.4967	0.4968	0.4969	0.4970	0.4971 0.4979	0.4972	0.4973	0.4974
			0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
	3.0 0.	4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
			0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
			0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
			0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
	0.0	1001	4001	0.700/	0.4001	117001	4.4001	2.700/	2.4021	2.40el	-, 4000]

Normal Distribution

Q. Avg Weight of the College (n = 500) is 65 kg with variance of 2, calculate the probability that how many students have < 60 kg

$$Z = \frac{X - \overline{X}}{\sigma}$$

$$= \frac{6b - 65}{2} = -\frac{5}{2}$$

$$Z = -2.5^{-} = 0.5000$$

$$P(<60) = 500 \times 0.4938$$

$$= 246.9$$

$$P \simeq (241)$$

	Tabl	e entry fo	Tabi			endard no	ormal cur	ve to the	left of z.	
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	,0009	.0006	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.6	.0035	.0034	.0033	.0032	.0031	.0040	.0029	.0028	.0027	.0026
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0052	.0068	.0066	.0048
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	,0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	,0244	.0239	,0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1075	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.158/	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	,4325	.4286	.4247
-0.0	.5000	,4960	.4920	.4880	4840	.4801	.4761	.4721	.4681	.4641

