Measure of

Central Tendency (Part 1)

Basics Concepts Types

Dispersion, skewness, kurtosis

Biostatistics \& Research Methodology B Pharm $8^{\text {th }}$ Sem $\mid M$. Pharm. | PhD

Measures of Central Tendency

- Measures of central tendency- Statistical Average
? It tell us the point about which items have a tendency to collection. Such a measure is considered as the most representative figure/Value for the entire mass of data.
- Represent the single value to describe the whole dataset
- This representative value is called the measure of central tendency
-. Mean, Median and Mode, are most common Statistical Average

Measures of Central Tendency

- Classification

Average

Measures of Central Tendency

\square Objectives

? To get the single value that describe the whole data group (i.e., average blood sugar level of whole group)

- To facilitate compare between two different group.

SN	Group A		Group B
$1 x_{1}$	100		
$2 x_{2}$	120		
$3 x_{3}$	110		200
Mean	110	V_{S}	210

? It offer the base for computing other measure like variation, dispersion, skewness, kurtosis, etc.

Measures of Central Tendency

@ Objectives

? It offer the base for computing other measure like variation, dispersion, skewness, kurtosis, etc.

Variatr
\Downarrow

range 200

Measures of Central Tendency

\square Objectives

? 9 It offer the base for computing other measure like variation, dispersion, skewness, kurtosis, etc.

Left Skewed (-ve)

$$
m=26013=66.6
$$

Right Skewed (-ve) an $160 / 3=53$.

Measures of Central Tendency

\square Objectives

? It offer the base for computing other measure like variation, dispersion, skewness, kurtosis, etc.

Platykurtic

MesoKurtic

Leptokurtic

Measures of Central Tendency
(9. Easy to Understand

- Simple to computation and Comparison
? - Based on all dataset
$N=100$ Student
- 2 Not affected by extreme observations
- Sampling stability (random sampling)

Measure of

Central Tendency

 (Part 2)\checkmark Mean
\checkmark Median
\checkmark Mode

Biostatistics \& Research Methodology B Pharm 8 ${ }^{\text {th }}$ Sem | M. Pharm. | PhD

Measures of Central Tendency

- Measures of central tendency- Statistical Average
- Represent the single value to describe the whole dataset
- This representative value is called the measure of central tendency
- Mean - Arithmetic mean- Average of deta
- Median - Mid point of the data
- Mode-Most frequent data

$$
\begin{aligned}
\frac{(n+1)^{\text {th }}}{2} & -\frac{6}{2} \\
& 3^{\text {n/4 }}
\end{aligned}
$$

Example: 1, 3, 8, 8, 10, 12
-. Mean- $42 / 6=7$

- Median- 8
- Mode- 8

Mean

4. Mean is average of the given numbers which is calculated by sum of all the values of data divided by the total number of values.

$$
\begin{aligned}
& \text { Mean } \bar{X}= \frac{\sum X i}{n}=\frac{X 1+X 2+X 3 \ldots \ldots . .+X n}{n} \\
& X=\text { The symbol we use for mean (pronounced as } X \text { bar) } \\
& \sum=\text { Symbol for summation } \\
& X i=\text { Value of the ith item } X, i=1,2, \ldots, n \\
& n=\text { total number of items }
\end{aligned}
$$

SN	Group A	Group B
1×100	210	
$2 Y_{2}$	120	200
3×3	110	220
Mean	$\mathbf{1 1 0}$	$\mathbf{2 1 0}$
Mean	$(100+120+110) / 3$	$(210+200+220) / 3$
	$330 / 3=110$	$630 / 3=210$

Mean

© Formula for individual dała

Mean $\bar{X}=\frac{\sum X i}{n}=\frac{X 1+X 2+X 3 \ldots \ldots .+X n}{n} \quad$ Or $\quad \bar{X}=A+\frac{\sum d}{n}$, where $A=$ Assumed mean $d=X-A$
Example 1: calculate the mean production of tablet by a tab punching machine, production of tablet/day in thousand-120, 100, 110, 150, 120, 100,

120

$$
\begin{gathered}
\text { mean }=(120+100+110+150+120+100+120) / 7 \\
820 / 7=117.15 \text { thousand per day }
\end{gathered}
$$

Mean

[1. Formula for individual data
Example 1: calculate the mean production of tablet by a tab
punching machine, production of tablet/day in thousand- 120, 100,
110, 150, 120, 100, 120,

SN	$\left.\begin{array}{l}\text { Per Day Production } \\ \text { (in Thousand) }\end{array} \mathrm{X}\right)$	$\mathrm{d}(\mathrm{X}-120)$
1	$120-120$	0
2	$100-120$	$-20 \checkmark$
3	110	$-10 \checkmark$
4	150	30
5	120	0
6	100	-20
7	120	0
Sum		-20

$$
\begin{aligned}
\bar{X} & =A+\frac{\sum d}{n}, \text { where } A=\text { Assumed mean } \mathrm{d}=\mathrm{X}-\mathrm{A} \\
\bar{X} & =A+\frac{\sum d}{n} \\
& =120+(-20 / 7) \\
& =120-2.85 \\
& =117.15 \\
& =117.15 \text { Thousand per day }
\end{aligned}
$$

Mean

Formula for Discrete data

$X=\frac{\sum_{i=1}^{n} f i X i}{\sum_{i=1}^{n} f i} \quad$ Or $\quad \bar{X}=A+\frac{\sum f d}{N}$, where $A=$ Assumed mean $\mathrm{d}=\mathrm{X}-\mathrm{A}$
$\sum_{i=1}^{n} f i=\mathrm{N}$ Sum of all frequency
Example 2. Hypertensive patient per family in a village, calculate the arithmetic mean
(avg patient per family)

SN	No. of HTN Patients (X)	No. of Family (F)	FX	
1	0	y	50	0
2	1	y	20	20
3	2	y	70	140
4	3	y	10	30
	SUM		150	そFY

$$
\begin{aligned}
X= & \frac{\sum_{i=1}^{n} f i X i}{\sum_{i=1}^{n} f i} \\
& =190 / 150 \\
& =1.26
\end{aligned}
$$

Mean

© Formula for Continuous data
$X=\frac{\sum_{i=1}^{n} f i M i}{\sum_{i=1}^{n} f i}$ Or $\bar{X}=A+\frac{\sum f d}{N}$, where $A=$ Assumed mean $d=M-A$
$\sum_{i=1}^{n} f i=N$ Sum of all frequency
Example 3. Hypertensive patient per age group in a village, calculate the arithmetic mean (avg age of patient)

	Age (Y)	No. of Patient (F)	M		FM	
1	0-20	0	\rangle	10	$=$	0
2	20-40	10	\rangle	30	-	300
3	40-60	100	\rangle	50	2	5000
4	60-80	80	>	70	$=$	5600
	SUM	EffrN 190		EFM		10900

$$
\begin{aligned}
X= & \frac{\sum_{i=1}^{n} f i M i}{\sum_{i=1}^{n} f i} \\
& =10900 / 190 \\
& =57.36
\end{aligned}
$$

Mean

? Formula for Continuous data

Example 4. Calculate the avg accident per week in the given deta

	No of Accident s	No. of Week (F)	M		FM
1	$0-10$	15	y	$\underline{5}$	75
2	$10-20$	10	y	$\underline{15}$	150
3	$20-30$	20	y	$\underline{25}$	500
4	$30-40$	7	y	35	245
	SUM	M	52		

$$
\begin{aligned}
X= & \frac{\sum_{i=1}^{n} f i M i}{\sum_{i=1}^{n} f i} \\
& =970 / 52 \\
& =18.65
\end{aligned}
$$

Mean

- Example from Question paper

Median

- Median represents the mid-value of the given set of data when arranged in a particular order
(9. Given that the data collection is arranged in ascending or descending order, the following method is applied:
? If number of values or observations in the given data is odd, then the median is given by $[(\mathrm{n}+1) / 2]$ th observation.

$$
8,2,5,6,1
$$

(7) If in the given data set, the number of values or observations is even, then the median is given by the average of ($n / 2$)th and [(n/2) +1]th observation.

$$
1,4,5,6,7,8
$$

Mode

(1. The most frequent number occurring in the data set is known as the mode.

SN	No. of HTN Patients (X)	No. of Family (F)
1	0	50
2	1	20
3	2	.70
4	3	10
	SUM	150

Mode

(9) For Grouped Data.

Marks Obtained	No of Student
$10-20^{-}$	5 j
$20-30$	
$30-40$	12
$40-50$	8

$$
\begin{aligned}
\text { Mode }= & 20+[(12-5) /(2 \times 12-5-8)] \times 10 \\
& 20+[7 / 11] \times 10 \\
& 20+(0.63 \times 10) \\
& 20+6.3 \\
& 26.3
\end{aligned}
$$

Measures of Dispersion (Part 1)

BASIC CONCEPTS OF DISPERSION

Biostatistics \& Research Methodology B Pharm $8^{\text {th }}$ Sem $\mid ~ M . ~ P h a r m$. | PhD

Measures of Dispersion

? Dispersion means spread or distribution of data
! Statistical dispersion means variation form average value
?. Dispersion is important for comparing the dataset/group

$$
\begin{aligned}
& \bar{x}=100 \mathrm{~K} \\
& 1=100 \mathrm{~K} \\
& 2-2000 \mathrm{H} \\
& 3-\frac{50 k}{2}-2 \\
& 4-\frac{500}{400 \mathrm{~K}}-100 \mathrm{~K} \\
& \mathrm{mang}=\frac{150}{2}
\end{aligned}
$$

$\bar{x}=100 \mathrm{k}$
1,100
$2=200$
$3-100$
$4=400 / 4$
rang: 200 r

Measures of Dispersion

!. Dispersion means spread or distribution of data
I. Statistical dispersion means variation form average value

- Dispersion is important for comparing the dataset/group

5 Student

5 student
10Lathy
$1-5=$

Measures of Dispersion
Significance of the Dispersion
Labl Labl Lab3

d)	Lab 1	Lab2	$6 a^{6}$
	Tablet Machine A	Tablet Machine B	Tablet Machine C
	300	200	50
d_{2}	300	200	150
d_{3}	500	600	800
dy	500	600	600
\bar{X}	400	400	400
	$\begin{gathered} \text { sange } 500-300 \\ 100-1+100 \\ 400 \end{gathered}$	$\begin{gathered} \text { rang } 606-200 \\ 400 \\ 200-1+200 \end{gathered}$	range $\begin{aligned} & 800-50 \\ & N T\end{aligned}$
	$\begin{gathered} 29 n+S D=400 \pm 100 \\ 1 \end{gathered}$	$=\frac{400 \pm 200}{11}$	

4

Measures of Dispersion

Significance of the Dispersion

- Dispersion indicates the distribution of data

0 It determine the reliability of an average

- It helps to control the variability
! It helps to compare the multiple group in respect to variability
? Also useful for other statistical measure

Tablet Machine A	Tablet Machine B	Tablet Machine C
300	200	50
300	200	150
500 god pi~~	600	800
500	600	600
400	400	400

Measures of Dispersion

Measures of Dispersion

Property of Measures of Dispersion

- - Simple and easy to understand
- Easy to compute and compare
\square Rigidity defined
. Based on all date and not affected by extreme observation
! Sample stability

Measure of Dispersion (Part 2)

BASICS OF RANGE

Biostatistics \& Research Methodology B Pharm $8^{\text {th }}$ Sem $\mid M$. Pharm. | PhD

Measures of Dispersion

Measures
of
Dispersion

Absolute Measures of Dispersion	Range
	Variance
	Standard Deviation
	Mean Deviation
	Quartile Deviation
	Lorenz Curve
Relative measure of Dispersion	Co-efficient of Range
	Co-efficient of Variance
	Co-efficient of Standard Deviation
	Co-efficient of Mean Deviation
	Co-efficient of Quartile Deviation

RANGE

Simplest method for determining measures of Dispersion
?. Difference between smallest and Largest Value given in dataset

Range = (Largest-Smallest)

Coefficient of Range $=(\mathrm{L}-\mathrm{S}) /(\mathrm{L}+\mathrm{S})$

\% Individual Data	Day	Tablet Machine A	Tablet Machine B
	1	300 S	(200)-S
	2	300	200
	3	500	600
	4	500 L	600 L
	Mean	(400) \bar{x}_{A}	$=400 \bar{x}_{B}$

[^0]\[

$$
\begin{aligned}
\text { Range }= & \text { L-S } \\
& =600-200=400
\end{aligned}
$$
\]

Coefficient of Range $=L-S / L+S$

$$
=400800=0.5
$$

RANGE

SN	No. of HTN Patients (X)	No. of Family (F)	FX
1	$0-S$	50	0
2	1	20	20
3	2	70	140
4	$3-L$	10	30
	SUM	Ef, 150	190)

$$
\begin{aligned}
X & =\frac{\sum f X}{N} \\
& =190 / 150 \\
\text { mean } & =1.26 \\
\text { Range } & =\text { L-S } \\
& =3-0=3
\end{aligned}
$$

Coefficient of Range $=\mathrm{L}-\mathrm{S} / \mathrm{L}+\mathrm{S}$
$=3 / 3=1$

								Sum
Marks	S 5	10	11	15	L	8	7	9
No. Student. (F)	10	10	5	1	14	10	10	6
FX	50	10	2					

$$
\begin{aligned}
& \text { mean }=492 / 60=8.2 \text { Range }=L-S=15-5=10 \text { Coefficient of Range }=L-S / L+S \\
& =15 / 20=0.75
\end{aligned}
$$

MERITS

!. Easy and Simple
! Rapid Calculation

- 0 Very Quick picture to variability
! DEMERITS
. 0 Not include every data
\square Less Accuracy
Q. It not tell any thing about character of the distribution
- Can't be computed in case of open end distribution

Measures of Dispersion (Part 3)

Standard Deviation and Variance

Biostatistics \& Research Methodology B Pharm $8^{\text {th }}$ Sem $\mid M$. Pharm. | PhD

Measures of Dispersion

Measures
of
Dispersion

Ábsolute Measures of Dispersion	Range
	Variance
	Standard Deviation
	Mean Deviation
	Quartile Deviation
	Lorenz Curve
Relative measure of Dispersion	Co-efficient of Range
	Co-efficient of Variance
	Co-efficient of Standard Deviation
	Co-efficient of Mean Deviation
	Co-efficient of Quartile Deviation

STANDARD DEVIATION

-. Most commonly used to determine the dispersion
?. Measures of Absolute dispersion
0. SD directly proportional to dispersion (Greater SD = Greater Dispersion)
?. SD define as the square root of variance, which denote as sigma ($\sigma)$

$$
\begin{aligned}
& \sigma=\sqrt{\text { Variance }} \\
& \sigma^{2}=\text { Variance }
\end{aligned}
$$

?. Variance: The average of the squared differences from the Mean.

STANDARD DEVIATION

(9. Example (Individual data): calculate the mean, Variance and SD

- 9 Marks of students $(\mathrm{N}=5): 8,7,8,7,10$

9. Mean $=(8+7+8+7+10) / 5=40 / 5=8$

9 Variance $\left(\sigma^{2}\right)=\frac{\sum(X 1-\text { mean })^{2}+(X 2-\text { mean })^{2}+\cdots \ldots . .+(X n-\text { mean })^{2}}{N}$

$$
=(0+1+0+1+4) / 5=6 / 5=1.2
$$

SD $(\sigma)=\sqrt{ }$ Variance

$$
=\sqrt{1} .2=1.09
$$

S \mathbf{N}	Marks	Diference from mean $(X-m)$	$(\mathrm{X}-\mathrm{m})^{2}$
1	8	0	0
2	7	-1	1
3	8	0	0
4	7	-1	1
5	10	2	4
m	8		Sum=

*If we used population then we divided by N in calculation of variance
*If we used a sample the we devided by $\mathrm{N}-1$ in calculation of variance For Sample:

Variance- $6 / 4=1.5 \quad S D=\sqrt{ } 1.5=1.22$

STANDARD DEVIATION

For Population, SD $(\sigma)=\sqrt{ } \sum_{1}^{n}(X i-m e a n)^{2} / N$
!. For Sample, SD (σ) $=\sqrt{ } \sum_{1}^{n}(X i-\text { mean })^{2} / N-1$

For Individual data. $S D=\sqrt{\frac{\Sigma d^{2}}{N}-\left(\frac{\Sigma d}{N}\right)^{2}}$
Coefficient of Variation (CV or \% CV)

$$
C V=(\sigma / \text { mean }) \times 100
$$

For Discrete data: $\quad S D=\sqrt{\frac{\Sigma F d^{2}}{N}-\left(\frac{\Sigma F d}{N}\right)^{2}}$
For Contineous data $S D=\sqrt{\frac{\Sigma F d^{2}}{N}-\left(\frac{\Sigma F d}{N}\right)^{2} \times i}$

STANDARD DEVIATION

- For Individual data: $S D=\sqrt{\frac{\Sigma d^{2}}{N}-\left(\frac{\Sigma d}{N}\right)^{2}}$
(1. Example: Calculate the SD of given data- 2, 4, 8, 10, 12, 16

X	$\mathrm{d}(\mathrm{X}-\mathrm{A})$	d 2
2	-8	64
4	-6	36
8	-2	4
10	0	0
12	2	4
16	6	36
$\mathrm{M}=8.6$	-8	144

$$
\begin{aligned}
S D & =\sqrt{\frac{144}{6}-\left(\frac{-8}{6}\right)^{2}} \\
S D & =\sqrt{24-(-1.33)^{2}} \\
S D & =\sqrt{24-1.76} \\
S D & =\sqrt{22.24} \\
S D & =4.71
\end{aligned}
$$

$$
C V=(4.71 / 8.66) \times 100=0.543 \times 100=54.3
$$

STANDARD DEVIATION

ๆ. For Discrete data: $S D=\sqrt{\frac{\Sigma F d^{2}}{N}-\left(\frac{\Sigma F d}{N}\right)^{2}}$
© Example:

$$
C V=(2.21 / 6.52) \times 100=0.338 \times 100=33.8
$$

STANDARD DEVIATION

! For Continuous data $S D=\sqrt{\frac{\Sigma F d^{2}}{N}-\left(\frac{\Sigma F d}{N}\right)^{2}} \times \mathbf{i}$
(9. Example: Calculate the SD of given data

Mark s	No Stude nts (F)	M	FM	d $(\mathrm{M}-$ $25) /$ 10	$\mathrm{~d}^{2}$	Fd	Fd^{2}	
$0-10$	12	5	60	-2	4	-24	48	$S D=\sqrt{\frac{108}{50}-\left(\frac{-4}{50}\right)^{2}} \times 10$

$$
C V=(14.6 / 24.2) \times 100=0.603 \times 100=60.3
$$

Measure of Dispersion (Part 4)

Mean Deviation \& Coefficient of Mean
 Deviation

Biostatistics \& Research Methodology
B Pharm $8^{\text {th }}$ Sem $\mid M$. Pharm. | PhD

Measures of Dispersion

Measures of Dispersion	Absolute Measures of Dispersion	Range
		variance)
		Standard Deviation
		Mean Deviation
		Quartile Deviation
		Lorenz Curve
	Relative measure of Dispersion	Co-efficient of Range
		Co-efficient of Variance
		Co-efficient of Standard Deviation
		Co-efficient of Mean Deviation -
		Co-efficient of Quartile Deviation

MEAN DEVIATION

-7. Mean Deviation- Average deviation from the mean value in given dataset.
! 9 Average difference between the item in a distribution vs mean/median

$$
\text { Mean Deviation }=\Sigma(|X i-A v g|) / N
$$

X	Difference from mean
$1-3=\|-2\| \rightarrow^{2}+$	
2	$1 \checkmark$
$3 \checkmark$	$0{ }^{+}$
$4 \checkmark$	$1 \stackrel{+}{\square}$
$5 \checkmark$	2*
Mean $=3$ "	6) $=\sum \mid x-f$

$$
\begin{aligned}
& =6 / 5 \\
& =1.2
\end{aligned}
$$

MEAN DEVIATION

? Individual Data

$$
M D=\frac{\sum|D|}{N}
$$

- Discrete Data

$$
M D=\frac{\sum f|D|}{N}
$$

1 - Continuous Date

$$
M D=\frac{\sum f|D|}{N}
$$

- Coefficient of $\mathrm{MD}=\mathrm{MD} /$ median

MEAN DEVIATION

0. Individual Data

$$
\begin{aligned}
& M D=\frac{\sum|D|}{N} \\
& |D|=|X-A| \\
& A=\text { Statistical Average (Mean or Median) } \\
& M D=6 / 5=1.2
\end{aligned}
$$

Coefficient of MD $=$ MD/Median
$=1.2 / 3=0.4$

MEAN DEVIATION

v. Discrete Data

| Marks | No
 Students
 (F) | CF | $\begin{aligned} & \|D\|=\mid X- \\ & A \mid \end{aligned}$ | F\|D| |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 12 | 12 | 1 | 24 |
| 5 | 10 | 22 | 1 | 10 |
| 6 | 8 | 30 | 0 | 0 |
| 8. | 10. | | 2 | 20 |
| 10. | 10 | 50 | 4 | 40 |
| | $\operatorname{Sum}_{N}=50$ | | | 94 |
| $A=6$ | | | | |

$$
M D=\frac{\sum f|D|}{N}
$$

$|D|=|X-A|$
A = Statistical Average (Mean or Median)
Median $=\mathrm{N}+1 / 2=50+1 / 2=25.5^{\text {th }}$
Median $=6+6 / 2=12 / 2=6$
$M D=94 / 50=1.88$
Coefficient of $\mathrm{MD}=1.88 / 6=0.31$

MEAN DEVIATION

1 Continuous Data

$$
M D=\frac{\sum f|D|}{N}
$$

$|D|=|M-A|$
A = Statistical Average (Mean or Median)
Median = L + [(N/2)-CF]/fxi
$N / 2=50 / 2=25 \quad C F=22, F=8, i=10, L=20$
Median $=20+\frac{25-22}{8} \times 10$
Median $=20+0.375 \times 10=20+3.75=23.75$
$M D=647.5 / 50=12.95$
Coefficient of $\mathrm{MD}=12.95 / 23.75=0.54$

Thanks for Watching - \sim ~ μ

Pharmacology Concepts By Rajesh Choudhary
Suberibe 1.015 subseribers

Subscribe my
Channel YouTube

Uploads

0

[^0]: Range $=$ L-S

 $$
 =500-300=200
 $$

 Coefficient of Range $=L-S / L+S$

 $$
 =200 / 800=0.25
 $$

