ЪÇ.

Thin Layer Chromatography

✓ Basic Introduction
 ✓ Principle
 ✓ Procedure
 ✓ Application
 ✓ Retardation/Retention
 Factor

Chromatography Instrumental Analysis

THIN LAYER CHROMATOGRAPHY

Introduction:

- Thin Layer Chromatography is a technique used to isolate non-volatile mixtures of different compounds by using a thin layer of adsorbent (stationary phase) coated in either glass plate (Slides), aluminum sheet, or plastics
- In 1938, Izrnailov and Shraiber separated the plant extract using 2 mm thick and film layer of alumina glass plate

Ðĝ

ЪÇ.

THIN LAYER CHROMATOGRAPHY

Principle:

- Adsorption Chromatography involves the separation of a chemical mixture in the TLC
- When the mobile phase (liquid) run over the TLC plate (coated with adsorbent; Stationary phase; Solid) by the capillary action, the analyte mixture is separated out due to adsorption phenomenon and give the different Rf (Retardation factor) values for each component present on the analyte sample
- Rf = Distance travel by solute (spot)/ Distance travel by Solvent

THIN LAYER CHROMATOGRAPHY

Types & Techniques:

SN	Technique	Stationary Phase	Mobile Phase
1	Adsorption	Silica gel, Alumina, Charcoal	Non-Polar/Polar solvent
2	Partition	Cellulose, Silica Gel	Mixed aqueous, organic solvent
3	Řeverse Phase	ODS silica gel, coated silica, acetylated cellulose	Mixed aqueous, polar solvent
4	Ion Exchange 🧹	Ion exchange resins, CM cellulose	Buffered aqueous solution
5	Size Exclusion 🗸	Dextran gels	Buffered aqueous solution

THIN LAYER CHROMATOGRAPHY

Stationary Phase:

- Silica Gel:
- it is a an amorphous and porous form of <u>silicon dioxide</u> (<u>siO2</u>) and acidic in nature
- most commonly used in the TLC
- Average particle size- 15 um
- Silica Gel G (50% slurry) mainly used in TLC contains- SiO2 + CaSO4 or Gypsum (10%)
- Silica Gel GF254 (50% slurry) is more useful in TLC, it contains SiO2 + CaSO4 or Gypsum + Zn4Si2O7(OH)2 or Zinc Silicate
- Gypsum is used as a binder and Zinc silicate used as a fluorescent material.

THIN LAYER CHROMATOGRAPHY

Stationary Phase:

- Alumina:
- Alumina (Al2O3) is second most widely used in the TLC
- It is prepared from AI(OH)3 by calcination process at 500 C
- Avg particle size- 12 um
- Unlike the Silica Gel G binder is not required
- Basis of nature there are three types of alumina- acidic, basic, and neutral
- Diatomaceous Earth (Kieselguhr):
- Naturally occurring, soft, siliceous sedimentary rock,
- Composition- 80-90% Silica, 2-4% Alumina, and 0.5-2% Iron oxide
- Particle size range- 10-200 um

Ðĝ

n Ca

THIN LAYER CHROMATOGRAPHY

Stationary Phase:

- Modified cellulose powders are used to obtain ionexchange separation in TLC
- It can be used with or without binder
- Separation by partition mechanism
- It commonly used to separate the hydrophilic substance like amino acid, sugers, etc,

THIN LAYER CHROMATOGRAPHY

Stationary Phase:

Table: Stationary phase and mode of separation							
Stationary Phase	Chromatographic Mechanism	Typical Application					
Silica Gel	adsorption 🧹	steroids, amino acids, alcohols, hydrocarbons, lipids, aflaxtoxin, bile, acids, vitamins, alkaloids 🖉 🗸					
Silica Gel RP 🧹	reversed phase 🧹	fatty acids, vitamins, steroids, hormones, carotenoids					
Cellulose, kieselguhr	partition –	carbohydrates, sugars, alcohols, amino acids, carboxylic acids, fatty acids					
Aluminum oxide	adsorption	amines, alcohols, steroids, lipids, aflatoxins, bile acids, vitamins, alkaloids 🗸					
PEI cellulose	ion exchange	nucleic acids, nucleotides, nucelosides, purines, pyrimidines					
Magnesium silicate	adsorption	steroids, pesticides, lipids, alkaloids					

ġġ

ðĝ

THIN LAYER CHROMATOGRAPHY

Solvent Polarity Index

Solvent Polarities for Various Liquids

Solvent	Solvent Polarity Index, P		
Hexane	0.1		
Carbon tetrachloride	1.56		
Isopropyl ether	1.83		
Toluene	2.4		
Methyl-t-butyl ether	2.4		
Chloroform	2.7		
Diethyl ether	2.8		
Dichloromethane	3.1		
Isopropanol	3.92		
Tetrahydrofuran	4.0		
Ethyl Acetate	4.4		
Methanol	5.1		
Acetone	5.1		
Dioxane	5.27		
Acetonitrile	5.8		
Water	10.2 000		

Mobile Phase:

- Proper solvent selection is the most important aspect of TLC, and determining the best solvent may require a degree of trial and error.
- As with plate selection, keep in mind the chemical properties of the analytes. A common starting solvent is
 1:1 hexane:ethyl acetate.

THIN LAYER CHROMATOGRAPHY

D	evelopm	ent	of Soly	vent S	vstam			
Phytoc	hemical	Mobile	phase	Confi	rmatory test	Extract	R _F Value	
Alka	aloids Aceto	ne:water:2	26% ammon	ia Dr	agendorff	1 ml HCL+9	0.96	
(90:7:3)				reagent	ml water	-		
Flow	naidas Chlara	form: Eth	(90.7.5)		num oblorido	70% otherol	0.07	
Flavonoides Chioroform: Et		form: Eur	yr acetate (0	(4) Alum	num chioride	70% ethanoi	0.97	
					reagent		\frown	
Tar	nins Chlore	oform: Eth	yl acetate (6	:4) 10% I	FeCl ₃ reagent	25ml water	(0.99)	
Phe	enols / Toluer	ne: Aceton	e: Formic ac	id 10%	KOH reagent	Methanol	0.97	
	- To	(60:60	:10)					
Sap	onins	Ethyl a	cetate	Vani	illin sulfuric	Methanol	(0.99)	
acid reagent								
Sr. No.	Elutant (mobile phase	Ratio	5 ml Volume	Remark	d reagent			
	combination)		of mobile					
	,		phase					
1	Hexane : Ethyl Acetate	100:0	5:0	increasing				
2	Hexane : Ethyl Acetate	90:10	4.5:0.5	polarity				
3	Hexane : Ethyl Acetate	70:30	3.5:1.5	according to				
4	Hexane : Ethyl Acetate	50:50	2.5:2.5	constituent's				
5	Hexane : Ethyl Acetate	0:100	00:5	nature				
6	Dichloromethane :	90:10	4.5:0.5	_				
7	Dichloromethane	70:30	3.5.1.5					
<i>'</i>	Acetone	/0.50	5.5.1.5					
8	Dichloromethane :	00:100	00:5					
-	Acetone							
9	Dichloromethane :	90:10	4.5:0.5					
	Methanol							
10	Dichloromethane :	70:30	3.5:1.5					
	Methanol							
11	Dichloromethane :	50:50	2.5:2.5					
10	Methanol	00.100	00.5					
12	Dichloromethane :	00:100	00:5					
	Methanol							

Procedure: Preparation of TLC plate First prepare the slurry of adsorbent, e.g., Silica Gel G (50 % w/v) TLC glass pate is dried in oven at 1100 C Then prepare the TLC plate (Thickness 250 um) by different methods: Pouring Dipping Spraying Spreading

THIN LAYER CHROMATOGRAPHY

THIN LAYER CHROMATOGRAPHY

Procedure:

Preparation of TLC plate

Layers have been classified into two types :

(A) Solid Layers

(B) Loose Layers

(A)Solid layers : For solid layers, a uniform layer of the adsorbent material is applied to a lean glass plate with the help of an applicator (Stahl's applicator). The most popular thickness of layer is 0.25 mm and the layers thinner than this are avoided. With the help of Stahl's Model II-S it is possible to prepare layers of thickness 0.25 - 2 mm.

THIN LAYER CHROMATOGRAPHY

Procedure:

- Preparation of TLC plate
- (B) Loose layers : Loose layers may be prepared by any of the following methods :
 - (i) Pouring of suspension onto the plate (aqueous slurry of adsorbent).
 - (ii) Dipping of plates in the suspension
 - (iii) Spraying with a thin suspension.

THIN LAYER CHROMATOGRAPHY

Procedure:

- apply sample spots, thin marks are made at the bottom of the plate with the help of a pencil.
- Apply sample solutions to the marked spots.
- Pour the mobile phase into the TLC chamber and to maintain equal humidity, place a moistened filter paper in the mobile phase.
- Place the plate in the TLC chamber and close it with a lid. It is kept in such a way that the sample faces the mobile phase.
- Immerse the plate for development. Remember to keep the sample spots well above the level of the mobile phase. Do not immerse it in the solvent.
- Wait till the development of spots. Once the spots are developed, take out the plates and dry them. The sample spots can be observed under a UV light chamber.

THIN LAYER CHROMATOGRAPHY

Application:

- Separation of the components from mixture
- The qualitative analysis of the components.
- TLC is extremely useful in Biochemical analysis such as separation or isolation of biochemical metabolites from its blood plasma, urine, body fluids, serum, etc.
- It is used for the purification of samples and direct comparison is done between the sample and the authentic sample.
- It is used in the food industry, to separate and identify colours, sweetening agent, and preservatives
- It is used in the cosmetic industry.
- It is used to study if a reaction is complete.

Ðĝ THIN LAYER CHROMATOGRAPHY **Advantages:** Easy to analyze Easily visualize Inexpensive Quicker Several compounds can easily get isolated through TLC Disadvantages The TLC procedure can not be used for lower detection limit experiments because it has a high detection limit. Result reproduction is challenging in TLC. TLC is limited to qualitative analysis The separation length is also restricted as compared to other chromatography methods.

