Instrumental Method of Analysis B. Pharm. 7th Semester Model Question Paper Spectroscopy

Important Questions for Practice only

#GPAT #NIPER #Pharmacist #DI

www.youtube.com/pharmacologyconceptsbyrajeshchoudhary

Section I MCQs		
Q1. The far vaccum ultraviolet re (a) 10 - 200 mμ (c) 50 - 150 mμ	egion of electromagnetic spectrum ranges from : (b) 10 - 300 mμ (d) None of these	
Q2. The ultraviolet region ranges (a) 100 - 300 mμ (c) 200 - 400 mμ	from: (b) 100 - 400 mμ (d) 200 - 350 mμ	
Q3. The shift of an absorption ma (a) Bathochromic shift (c) Hypsochromic shift	axima to a higher wavelength is known as: (b) Hyperchromic shift (d) Hypochromic shift	
Q4. When absorption energy is in (a) Hypochromic shift (c) Bathochromic shift	ncreased, then the shift is called as: (b) Hyperchromic shift (d) Hypsochromic shift	
Q5. All of the following types of (a) $n - \pi^*$ (c) $\sigma - \pi^*$ (e) $\sigma - \sigma^*$	transition are possible within ligands, except : (b) n - σ^* (d) π - π^*	
 Q6. Electronic transitions in organic molecules involves: (a) Transitions of σ electrons. (b) Transition of n electrons (c) Transition of π-electrons (d) All of the above 		
 Q7. All of the following statements regarding n electrons are true except: (a) They are non bonding electrons. (b) They are found in atoms such as N, O, S and halogens. (c) They are tightly held and the energy of UV region can not overcome this attraction. (d) They undergo n - π* and n - σ* types to transitions. 		

(a) They are organic group(b) They are colour excitin(c) A molecule containing	ments regarding <i>c</i> hromophoric groups are true except : os and undergoes $n - \pi^*$ and $\pi - \pi^*$ transition ag groups. these is called as chromophore. oups like hydroxyl, amino, halogen etc.
Q9. The most commonly used (a) Tungsten filament inca (b) Deuterium/hydrogen (c) Tungsten-iodine lamp (d) Quart-iodine lamp	andescent
Q10. The commonly used dete (a) Photomultiplier tube (c) Bolometer	ctor in the UV spectrophotometer is: (b) Thermocouple (d) Littrow prisms
Q11. The region for infrared ra (a) 14290 – 4000 cm ⁻¹ (0.7) (b) 4000 – 666 cm ⁻¹ (2.5 – (c) 700 – 200 cm ⁻¹ (14.3 – (d) None of the above	7 – 2.5 μm) - 15.0 μm)
Q12. Bending vibration include (a) Stretching (c) Rocking	es all of the following except: (b) Twisting (d) Torsional vibrations
Q13. According to $3n - 6$ rule, (a) 2 fundamental vibratio (b) 3 fundamental vibratio (c) 4 fundamental vibratio (d) 5 fundamental vibratio	ions ns
Q14. For obtaining infrared rac (a) 500 - 1000 °C (c) 1000 - 1800 °C	diations, Nernst filament should be heated to : (b) $1000 - 1500 ^{\circ}\text{C}$ (d) $1000 - 1850 ^{\circ}\text{C}$
Q15. The Nernst filament is fa (a) Zirconium (c) Cerium	bricated from the oxides of: (b) Thorium (d) All of the above.
Q16. The IR radiation source, (a) Silicon carbide (c) Zirconium oxide	Globar is chemically: (b) Silicon disulphide (d) None of the above.
(a) This is a commonly use(b) The radiant energy hea(c) It changes its resistan	tatement is not true regarding Thermocouple: ed detector in I.R. spectrophotometers. tts one of its two bimetallic junction and an emf is produced. ce upon heating. portional to the degree of heating.
Q18. Infrared spectra may be of (a) Solids (c) Gases	obtained for: (b) Liquids (d) All of the above

Q19. Which of the following is use (a) Carbon tetrachloride (c) Carbon disulphide	d as a mulling agent : (b) Nujol (d) All of the above	
Q20. Pressed disc technique for sar (a) Salt plates (c) KBr	nple preparation in I.R. involves the use of: (b) Nujol (d) None of the above	
Q21. The application of I.R. spectro (a) Qualitative analysis (c) Structural diagnosis	oscopy involves. (b) Quantitative analysis (d) All of the above.	
Q22. C-H stretching absorption for (a) 2962 - 2853 cm ⁻¹ (c) 3095 - 3075 cm ⁻¹	alkanes ranges from : (b) 3040 - 3010 cm ⁻¹ (d) 3040 - 3010 cm ⁻¹	
Q23. C-H bending vibrations for al $(a) \sim 3300 \text{ cm}^{-1}$ $(c) 1485 - 1445 \text{ cm}^{-1}$	kanes shows absorbtion in the region : (b) ~1340 cm ⁻¹ (d) 1470 - 1430 cm ⁻¹	
Q24. O-H stretching vibrations in a (a) 3550 - 3450 cm ⁻¹ (c) 3650 - 3590 cm ⁻¹	alcohols and phenols ranges from : (b) 3400 - 3200 cm ⁻¹ (d) 3570 - 3450 cm ⁻¹	
Q25. O-H beding vibrations for ter (a) $\sim 1030 \text{ cm}^{-1}$ (c) $\sim 1200 \text{ cm}^{-1}$	tiary alcohol shows absorption in the region : (b) \sim 1100 cm ⁻¹ (d) \sim 1150 cm ⁻¹	
	econdary amines shows absorption in the region : (b) 1650 - 1590 cm ⁻¹ (d) 1600 - 1575 cm ⁻¹	
Q.27. Relaxation from triplet state (a) Phosphorescence c) Relaxation Q.28. Quenching means	to ground state is known as b) Fluoroscence d) all	
a) Increase in the If b) Increase in the I0 Q29. A fluorescent light collected a	b) Decrease in the If d) Decrease in the I0 to the incident beam	
a) 180c) Both	b) 90 d) none	
 Q30. Flame photometry is based on a) Absorption c) Emission Q.31. Which element can be analyzed 	b) Adsorption d) all	
a) Alkali metalsc) Both a & b	b) Alkali earth metals d) None	
Q32. At which conc. Metallic element can be analysed by Atomic absorption spectroscopy a) ppm b) ppb c) ng/ml d) all Q33. Which gas is used in the hollow cathode lamp		
a) Argon b) NeonQ.34. Which detector is used in AAa) Refractive index detector	AS	

- c) Electro multiplier detector
- d) None
- Q.35. Which is the fast process
- a) absorption of energy (S0→S1)
- b) Phosphorescence (S1 \rightarrow T \rightarrow So)
- c) Fluorescence (S1→So)

Section 2. Long Question

- 1. Write the Basic principle, instrumentation, and application of UV Spectrophotometer
- 2. Discuss the various factors which affect the vibrational frequency of IR spectra
- 3. Write the Basic principle, instrumentation, and application of IR Spectrophotometer

Section 3. Short Questions

- 1. Electronic transition
- 2. Quenching effects
- 3. Fluorometry
- 4. Bears-Lambert Law
- 5. Flame Photometry
- 6. Atomic Absorption Spectroscopy