B. Pharm IV Semesater MEDICINAL CHEMISTRY 1 UNIT 4

Drugs acting on Central Nervous System

A. SEDATIVES AND HYPNOTICS:

Syllabus

Benzodiazepines: SAR of Benzodiazepines, Chlordiazepoxide, Diazepam*,Oxazepam, Chlorazepate, Lorazepam, Alprazolam, Zolpidem

Barbiturtes: SAR of barbiturates, Barbital*, Phenobarbital, Mephobarbital, Amobarbital,

Butabarbital, Pentobarbital, Secobarbital

Miscelleneous: Amides & imides: Glutethmide.

Alcohol & their carbamate derivatives: Meprobomate, Ethchlorvynol.

Aldehyde & their derivatives: Triclofos sodium, Paraldehyde.

4.1. Sedative and Hypnotics Pharmacology

- 1. Introduction: https://youtu.be/NAPO7XGiDKI
- 2. Barbiturates Pharmacology: <u>https://youtu.be/geuQ3yzOdb4</u>
- 3. BZDs Pharmacology: <u>https://youtu.be/lHkPoqmOq7o</u>
- 4. Non-Benzodiazepines: <u>https://youtu.be/xOhmrb4k-ME</u>
- 5. Alcohols: https://youtu.be/Va7KbegdeHQ

Sedatives:

- Drugs which reduce the excitement, anxiety and calm the patient without inducing the sleep and it may produce drowsiness. (Reduce the CNS activity)
- At large dose it may produce hypnotics
- Mainly act on limbic system which regulate the thought and mental functions

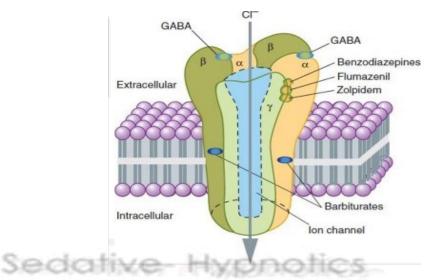
Hypnotics:

- Drugs which induce and maintain the normal sleep
- At high dose it may induce General Anesthesia
- Mainly act on Mid brain and Reticular Activating System which maintain the wakefulness.

Classification

1. Barbiturates

- Long Acting: Phenobarbitone
- Short Acting: Butobarbitone, Pentobarbitone
- Ultra Short Acting: Thiopentone, Methohexitone

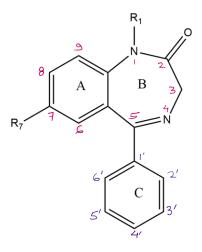

2. Benzodiazepines:

- Hypnotics: Diazepam, Flurazepam, Nitrazepam, Alprazolam, Temazepam, Triazolam
- Antianxiety: Diazepam, Chlordiazepoxide, Oxazepam, Lorazepam, Alprazolam
- Anti-convulsion: Diazepam, Lorazepam, Clonazepam, Clobazam

3. Newer nonbenzodiazepine hypnotics:

• Zopiclone, Zolpidem, Zaleplon

Mechanism of Action: GABA-A Receptor Mediated Inhibitory Action


Barbiturates

- Gaba Mimetic action
- More neurological depression
- Low margin of safety
- respiratory and
- cardiovascular depression
- Suppression of REM sleep

BDZs

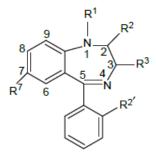
- Gaba Facilitatory action
- Less neurological depression
- High Margin of safety
- No respiratory and cardiovascular effects on hypnotic dose
- No effect on REM Sleep

Benzodiazepines

Basic Ring of Benzodiazepines

SAR :

A. Ring 'A':

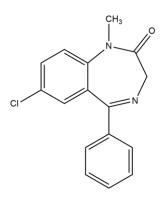

- Activity is increased if electron withdrawing group is substituted at position 7 (halogen, F₃, NO₂, CN etc),
- **2.)** Activity is decreased with substitution at position 8 & 9 and with electron donating group at position 7.
- **3.)** Position 6, 8, and 9 should be unsubstituted for the activity.

B. Ring 'B':

- **4.)** A phenyl substitutent at the 5-position is most satisfactory. Heteroaromatic or cycloalkyl substituents generally reduce the activity
- **5.)** Activity is increased if a methyl group is introduced at position 1, activity is decreased when larger substituents than methyl is introduced at position 1.
- 6.) Potency is decreased by replacements of carbonyl group with two hydrogens.
- 7.) Introduction of -OH group at position 3, lowers the activity.
- 8.) Introduction of a carbonyl function in the 3 position increases the duration of action.
- 9.) Alkyl substitution at position 3 decreases the activity,
- **10.)** Saturation of 4, 5 double bond or shift of it to the 3, 4 position decreases the activity

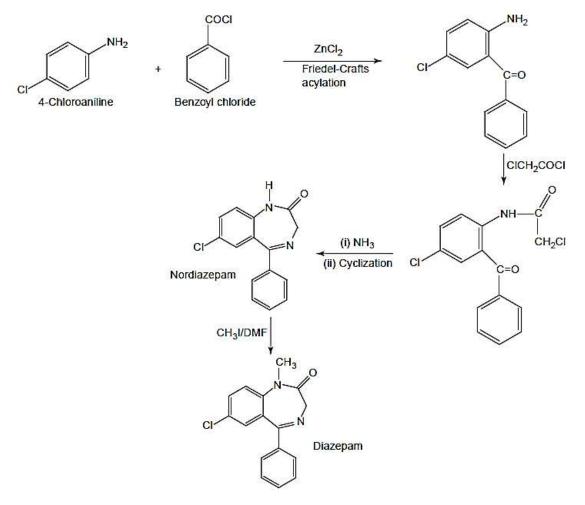
C. Ring 'C':

11.) Fluorine or chlorine at the ortho position or disubstitution on both ortho position increases activity. Any substitution at meta position decreases activity.

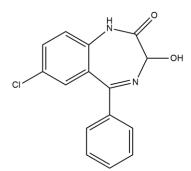

Name	R ¹	R ²	R ³	R ⁷	R ^{2′}
Diazepam	-CH ₃	= 0	-H	-Cl	-H
Oxazepam	-H	= 0	-OH	-Cl	-H
Chlordesmethyl diazepam	-H	= 0	-H	-Cl	–Cl
Fosazepam	o ∳	= 0	-H	-Cl	-H
	(CH ₂)P(CH ₃) ₂				
Prazepam	—сн ₂ -	= 0	-H	-Cl	-H
Nitrazepam	-H	= O	-H	-NO ₂	-H
Nordiazepam	-H	= O	-H	-Cl	-H
Nimetazepam	–CH ₃	= 0	-H	-NO ₂	-H
Flunitrazepam	$-CH_3$	= 0	-H	-NO ₂	-F
Flurazepam	-(CH ₂) ₂ N (C ₂ H ₅) ₂	= 0	-H	-Cl	-F
Quazepam	$-CH_2CF_3$	= S	-H	-Cl	-F
Halozepam	-CH ₂ CF ₃	= 0	-H	-Cl	-Н
Temazepam	$-CH_3$	= 0	-OH	-Cl	-Н
Lorazepam	-H	= 0	-OH	-Cl	-Cl
Clonazepam	-H	= O	-H	-NO ₂	-Cl
Doxefazepam	-CH ₂ OH	= 0	-OH	-Cl	–F

Uses of Benzodiazepines :

- 1. Used in the treatment of anxiety and insomnia.
- 2. Diazepam is used as an adjunct in the management of *Status epilepticus*.
- 3. Used as preanaesthetic medication.

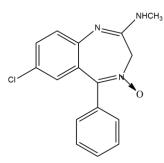

- 4. Used as a muscle relaxant.
- 5. Used in the treatment of alcohol withdrawal.
- 6. Used along with analgesics, NSAID'S, spasmolytics and antiulcer agents.

1) Diazepam*

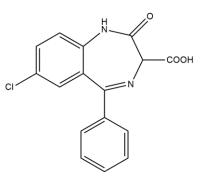


7-chloro-1, 3-dihydro-1-methyl- 5-phenyl-2H-1, 4, benzodiazepin-2-one.

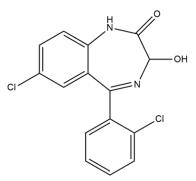
Synthesis



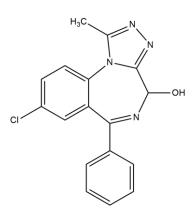
2) Oxazepam


7-chloro -1, 3-dihydro-3-hydroxy-5-phenyl-2H-1,4 - benzodiazepin-2-one

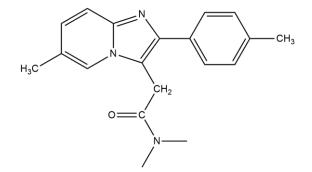
3) Chlordiazepoxide


7 - chloro - 2(methyl amino)-5-phenyl-3H-1, 4, -benzodiazepin -4-oxide.

4) Chlorazepate

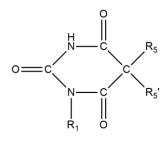

7-chloro-2,3-dihydro-2-oxo-5-phenyl-1H-1, 4- benzodiazepine-3-carboxylic acid

5) Lorazepam


7-chloro-5-(2 chlorophenyl) -1, 3-dihydro-3-hydroxy-2H-1, 4- benzodiazepin-2-one.

6) Alprazolam

8-chloro-1-methyl-6-phenyl-4*H*-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine


7) Zolpidem

N,N-dimethyl-2-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]acetamide

Barbiturates

Barbiturtes: SAR of barbiturates, Barbital*, Phenobarbital, Mephobarbital, Amobarbital, Butabarbital, Pentobarbital, Secobarbital

A) Long Acting (>6h)

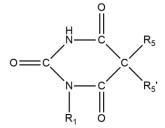
Name	R1	R⁵	R ⁵′
Barbital	-H	$-C_2H_5$	−C ₂ H ₅
Phenobarbital	-H	–C₂H₅	–C₅H₅
Mephobarbital	$-CH_3$	−C ₂ H ₅	–C₅H₅
Metharbital	-CH₃	$-C_2H_5$	$-C_2H_5$

B) Intermediate Acting (3-6 h)


~

Name	R ¹	R⁵	R⁵′
Amobarbital	-H	$-C_2H_5$	— сн ₂ сн ₂ сн < СН ₃
Butabarbital	-Н	$-C_2H_5$	— СН–СН ₂ –СН ₃ СН ₃
Aprobarbital	-H	CH ₂ = CH–CH ₂ -	(CH ₃) ₂ CH–
Talbutal	-H	CH ₂ = CH–CH ₂ -	CH ₃ CH ₂ CH(CH ₃)-
Butalbital	-H	CH ₂ = CH–CH ₂ -	(CH ₃) ₂ CHCH ₂ -
Hexobarbital	-CH ₃	-CH3	

C) Short Acting (<3h)


Name	R ¹	R⁵	R⁵′
Pentobarbital	-H	-C ₂ H ₅	сн ₃ сн ₂ сн ₂ сн —— сн ₃
Secobarbital	-H	CH ₂ = CH – CH ₂ -	СН ₃ (СН ₂) ₂ СН —— СН ₃
Cyclobarbital	-H	$-C_2H_5$	-
Heptabarbital	-H	$-C_2H_5$	

D) Ultrashort Acting (15 min)

(At C - 2 = S instead of = O)

Structural Activity Relationship of Barbiturates

1. Barbiturates are the derivatives of barbituric acid, but barbituric acid itself has not any hypnotic activity.

C-5 Substitutions:

2. dialkyl/aryl substitution at 5 position (R5 & R5') is responsible for hypnotic activity.

3. alkyl/aryl group enhance the lipid solubility.

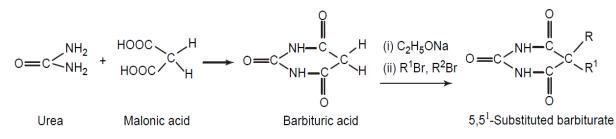
4. Both H-atom replace for the maximum activity.

5. Alkyl substitutions: Barbital -C₂H₅, Pentobarbitone -CH(CH₃)-CH₂-CH₂-CH₃, Amobarbitone -CH₂-CH₂-CH(CH₃)₂

- > Increase the length of alkyl chain- increases the potency up to 5 to 6 Carbon atom
- > Beyond 6 carbon atom- convulsant action produces due to increased lipophilicity

6. Cyclic substitutions: Phenobarbitone (phenyl), Hexobarbital (cyclohexene)

- Branched, cyclic, unsaturated chain-
 - \circ Decreases the duration of action, due to high metabolism
 - Cyclobarbital < Allobarbital < Phenobarbital
 - Increases the activity, due to high lipophilicity


N-1 Substitution

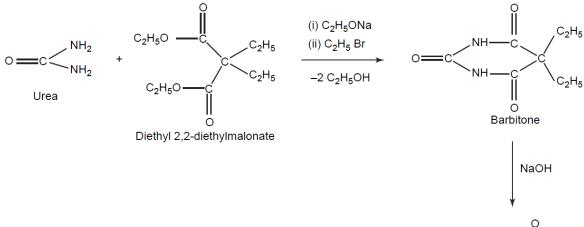
7. N-Methyl substitution (Hexobarbital)-shorten the duration of action and rapid onset of action

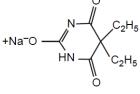
C-2 Position

8. Replace O-atom with S-atom (Thiopental)- fast onset of action, and shorter duration pf action, due to increase the lipid solubility

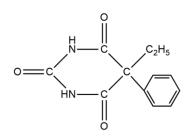

General Synthetic Procedure

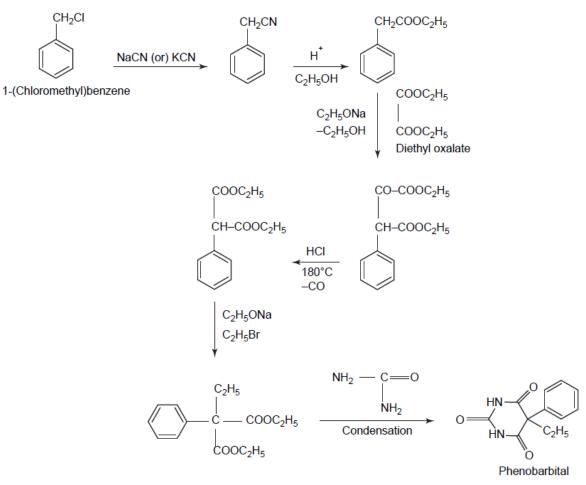
Mechanism of Action: GABA mimetic action


Uses: Hypnotics, Anticonvulsant, General Anaesthetics, Insomnia

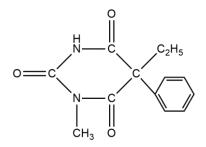

1) Barbital*

5,5-diethyl barbituric acid


Synthesis

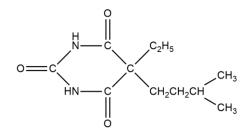

Barbitone sodium

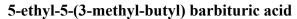
2) Phenobarbital

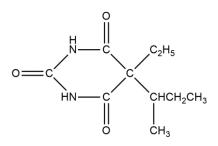


5-ethyl-5-phenyl barbituric acid

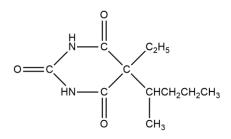
Synthesis



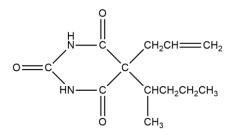

3) Mephobarbital


1-methyl-5-ethyl-5-phenyl barbituric acid

4) Amobarbital



5) Butabarbital


5-ethyl-5-(1-methyl-propyl) barbituric acid

6) Pentobarbital

5-ethyl-5-(1-methyl-propyl) barbituric acid

7) Secobarbital

5-(1-methyl-propyl)-5-prop-2-enyl-barbituric acid

B. Antipsychotics

Phenothiazeines: SAR of Phenothiazeines - Promazine hydrochloride, Chlorpromazine hydrochloride*, Triflupromazine, Thioridazine hydrochloride, Piperacetazine hydrochloride, Prochlorperazine maleate, Trifluoperazine hydrochloride. **Ring Analogues of Phenothiazeines: Chlorprothixene**, Thiothixene,Loxapine succinate, Clozapine. Fluro buterophenones: Haloperidol, Droperidol, Risperidone. Beta amino ketones: Molindone hydrochloride. Benzamides: Sulpieride. C. Anticonvulsants: SAR of Anticonvulsants, mechanism of anticonvulsantaction Barbiturates: Phenobarbitone, Methabarbital. Hydantoins: Phenytoin*, Mephenytoin, Ethotoin Oxazolidine diones: Trimethadione, Paramethadione Succinimides: Phensuximide, Methsuximide, Ethosuximide* Urea and monoacylureas: Phenacemide, Carbamazepine* Benzodiazepines: Clonazepam Miscellaneous: Primidone, Valproic acid, Gabapentin, Felbamate